|
1 |
| -python3 python/main.py --profile resnet50-onnxruntime --model "/home/runner/MLC/repos/local/cache/get-tvm-model_f84b4e4d/resnet50_v1.onnx" --dataset-path /home/runner/MLC/repos/local/cache/get-preprocessed-dataset-imagenet_3fc7d7a8 --output "/home/runner/MLC/repos/local/cache/get-mlperf-inference-results-dir_33a39d4e/test_results/gh_ubuntu-latest-reference-cpu-tvm-onnx-v1.19.2-default_config/resnet50/offline/accuracy" --backend tvm --scenario Offline --max-batchsize 1 --count 5 --threads 4 --user_conf /home/runner/MLC/repos/anandhu-eng@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/b90cb227f4ff49aabd6a6bdd5fc873d5.conf --accuracy --use_preprocessed_dataset --cache_dir /home/runner/MLC/repos/local/cache/get-preprocessed-dataset-imagenet_3fc7d7a8 --dataset-list /home/runner/MLC/repos/local/cache/extract-file_imagenet-aux-da_319e49f0/val.txt |
2 |
| -INFO:main:Namespace(dataset='imagenet', dataset_path='/home/runner/MLC/repos/local/cache/get-preprocessed-dataset-imagenet_3fc7d7a8', dataset_list='/home/runner/MLC/repos/local/cache/extract-file_imagenet-aux-da_319e49f0/val.txt', data_format=None, profile='resnet50-onnxruntime', scenario='Offline', max_batchsize=1, model='/home/runner/MLC/repos/local/cache/get-tvm-model_f84b4e4d/resnet50_v1.onnx', output='/home/runner/MLC/repos/local/cache/get-mlperf-inference-results-dir_33a39d4e/test_results/gh_ubuntu-latest-reference-cpu-tvm-onnx-v1.19.2-default_config/resnet50/offline/accuracy', inputs=None, outputs=['ArgMax:0'], backend='tvm', device=None, model_name='resnet50', threads=4, qps=None, cache=0, cache_dir='/home/runner/MLC/repos/local/cache/get-preprocessed-dataset-imagenet_3fc7d7a8', preprocessed_dir=None, use_preprocessed_dataset=True, accuracy=True, find_peak_performance=False, debug=False, user_conf='/home/runner/MLC/repos/anandhu-eng@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/b90cb227f4ff49aabd6a6bdd5fc873d5.conf', audit_conf='audit.config', time=None, count=5, performance_sample_count=None, max_latency=None, samples_per_query=8) |
| 1 | +python3 python/main.py --profile resnet50-onnxruntime --model "/home/runner/MLC/repos/local/cache/get-tvm-model_fc53d890/resnet50_v1.onnx" --dataset-path /home/runner/MLC/repos/local/cache/get-preprocessed-dataset-imagenet_f6cd337d --output "/home/runner/MLC/repos/local/cache/get-mlperf-inference-results-dir_2fe4283e/test_results/gh_ubuntu-latest-reference-cpu-tvm-onnx-v1.19.2-default_config/resnet50/offline/accuracy" --backend tvm --scenario Offline --max-batchsize 1 --count 5 --threads 4 --user_conf /home/runner/MLC/repos/GATEOverflow@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/48a0907163b14b47badb1488aaef59d7.conf --accuracy --use_preprocessed_dataset --cache_dir /home/runner/MLC/repos/local/cache/get-preprocessed-dataset-imagenet_f6cd337d --dataset-list /home/runner/MLC/repos/local/cache/extract-file_imagenet-aux-da_fe3ad174/val.txt |
| 2 | +INFO:main:Namespace(dataset='imagenet', dataset_path='/home/runner/MLC/repos/local/cache/get-preprocessed-dataset-imagenet_f6cd337d', dataset_list='/home/runner/MLC/repos/local/cache/extract-file_imagenet-aux-da_fe3ad174/val.txt', data_format=None, profile='resnet50-onnxruntime', scenario='Offline', max_batchsize=1, model='/home/runner/MLC/repos/local/cache/get-tvm-model_fc53d890/resnet50_v1.onnx', output='/home/runner/MLC/repos/local/cache/get-mlperf-inference-results-dir_2fe4283e/test_results/gh_ubuntu-latest-reference-cpu-tvm-onnx-v1.19.2-default_config/resnet50/offline/accuracy', inputs=None, outputs=['ArgMax:0'], backend='tvm', device=None, model_name='resnet50', threads=4, qps=None, cache=0, cache_dir='/home/runner/MLC/repos/local/cache/get-preprocessed-dataset-imagenet_f6cd337d', preprocessed_dir=None, use_preprocessed_dataset=True, accuracy=True, find_peak_performance=False, debug=False, user_conf='/home/runner/MLC/repos/GATEOverflow@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/48a0907163b14b47badb1488aaef59d7.conf', audit_conf='audit.config', time=None, count=5, performance_sample_count=None, max_latency=None, samples_per_query=8) |
3 | 3 | INFO:imagenet:Loading 5 preprocessed images using 4 threads
|
4 | 4 | INFO:imagenet:loaded 5 images, cache=0, already_preprocessed=True, took=0.0sec
|
5 |
| -TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_f84b4e4d/model-tvm.so |
| 5 | +TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_fc53d890/model-tvm.so |
6 | 6 | INFO:main:starting TestScenario.Offline
|
7 |
| -TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_f84b4e4d/model-tvm.so |
8 |
| -TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_f84b4e4d/model-tvm.so |
9 |
| -TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_f84b4e4d/model-tvm.so |
10 |
| -TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_f84b4e4d/model-tvm.so |
11 |
| -TestScenario.Offline qps=1.73, mean=1.7611, time=2.898, acc=80.000%, queries=5, tiles=50.0:1.4871,80.0:1.7731,90.0:2.3225,95.0:2.5971,99.0:2.8168,99.9:2.8663 |
| 7 | +TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_fc53d890/model-tvm.so |
| 8 | +TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_fc53d890/model-tvm.so |
| 9 | +TVM: loading model /home/runner/MLC/repos/local/cache/get-tvm-model_fc53d890/model-tvm.so |
| 10 | +TestScenario.Offline qps=1.72, mean=1.7559, time=2.899, acc=80.000%, queries=5, tiles=50.0:1.4702,80.0:1.7735,90.0:2.3251,95.0:2.6008,99.0:2.8214,99.9:2.8710 |
0 commit comments