|
| 1 | +import Foundation |
| 2 | +import MLX |
| 3 | +import MLXFast |
| 4 | +import MLXNN |
| 5 | +import MLXRandom |
| 6 | + |
| 7 | +// Port of https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/models/phimoe.py |
| 8 | + |
| 9 | +public struct PhiMoEConfiguration: Codable, Sendable { |
| 10 | + var modelType: String = "phimoe" |
| 11 | + var vocabularySize: Int = 32064 |
| 12 | + var hiddenSize: Int = 4096 |
| 13 | + var intermediateSize: Int = 6400 |
| 14 | + var hiddenLayers: Int = 32 |
| 15 | + var attentionHeads: Int = 32 |
| 16 | + var kvHeads: Int = 8 |
| 17 | + var maxPositionEmbeddings: Int = 131072 |
| 18 | + var originalMaxPositionEmbeddings: Int = 4096 |
| 19 | + var rmsNormEps: Float = 1e-6 |
| 20 | + var ropeScaling: RopeScalingWithFactorArrays? |
| 21 | + var numLocalExperts: Int = 16 |
| 22 | + var numExpertsPerToken: Int = 2 |
| 23 | + var ropeTheta: Float = 10000.0 |
| 24 | + |
| 25 | + enum CodingKeys: String, CodingKey { |
| 26 | + case modelType = "model_type" |
| 27 | + case vocabularySize = "vocab_size" |
| 28 | + case hiddenSize = "hidden_size" |
| 29 | + case intermediateSize = "intermediate_size" |
| 30 | + case hiddenLayers = "num_hidden_layers" |
| 31 | + case attentionHeads = "num_attention_heads" |
| 32 | + case kvHeads = "num_key_value_heads" |
| 33 | + case maxPositionEmbeddings = "max_position_embeddings" |
| 34 | + case originalMaxPositionEmbeddings = "original_max_position_embeddings" |
| 35 | + case rmsNormEps = "rms_norm_eps" |
| 36 | + case ropeScaling = "rope_scaling" |
| 37 | + case numLocalExperts = "num_local_experts" |
| 38 | + case numExpertsPerToken = "num_experts_per_tok" |
| 39 | + case ropeTheta = "rope_theta" |
| 40 | + } |
| 41 | +} |
| 42 | + |
| 43 | +private class Attention: Module { |
| 44 | + let args: PhiMoEConfiguration |
| 45 | + let scale: Float |
| 46 | + |
| 47 | + @ModuleInfo(key: "q_proj") var wq: Linear |
| 48 | + @ModuleInfo(key: "k_proj") var wk: Linear |
| 49 | + @ModuleInfo(key: "v_proj") var wv: Linear |
| 50 | + @ModuleInfo(key: "o_proj") var wo: Linear |
| 51 | + |
| 52 | + let rope: SuScaledRotaryEmbedding |
| 53 | + |
| 54 | + init(_ args: PhiMoEConfiguration) { |
| 55 | + self.args = args |
| 56 | + |
| 57 | + let dim = args.hiddenSize |
| 58 | + let heads = args.attentionHeads |
| 59 | + let kvHeads = args.kvHeads |
| 60 | + |
| 61 | + let headDim = args.hiddenSize / heads |
| 62 | + self.scale = pow(Float(headDim), -0.5) |
| 63 | + |
| 64 | + self._wq.wrappedValue = Linear(dim, heads * headDim, bias: true) |
| 65 | + self._wk.wrappedValue = Linear(dim, kvHeads * headDim, bias: true) |
| 66 | + self._wv.wrappedValue = Linear(dim, kvHeads * headDim, bias: true) |
| 67 | + self._wo.wrappedValue = Linear(heads * headDim, dim, bias: true) |
| 68 | + |
| 69 | + self.rope = SuScaledRotaryEmbedding( |
| 70 | + dimensions: headDim, |
| 71 | + base: args.ropeTheta, |
| 72 | + maxPositionEmbeddings: args.maxPositionEmbeddings, |
| 73 | + originalMaxPositionEmbeddings: args.originalMaxPositionEmbeddings, |
| 74 | + longFactor: args.ropeScaling?.longFactor as? [Float] ?? [1.0], |
| 75 | + longMScale: args.ropeScaling?.longMScale as? Float |
| 76 | + ) |
| 77 | + } |
| 78 | + |
| 79 | + func callAsFunction(_ x: MLXArray, mask: MLXArray? = nil, cache: KVCache?) -> MLXArray { |
| 80 | + let (B, L, _) = (x.dim(0), x.dim(1), x.dim(2)) |
| 81 | + |
| 82 | + let queries = wq(x) |
| 83 | + let keys = wk(x) |
| 84 | + let values = wv(x) |
| 85 | + |
| 86 | + // Prepare the queries, keys and values for the attention computation |
| 87 | + var q = queries.reshaped(B, L, args.attentionHeads, -1).transposed(0, 2, 1, 3) |
| 88 | + var k = keys.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3) |
| 89 | + var v = values.reshaped(B, L, args.kvHeads, -1).transposed(0, 2, 1, 3) |
| 90 | + |
| 91 | + if let cache { |
| 92 | + q = rope(q, offset: cache.offset) |
| 93 | + k = rope(k, offset: cache.offset) |
| 94 | + (k, v) = cache.update(keys: k, values: v) |
| 95 | + } else { |
| 96 | + q = rope(q) |
| 97 | + k = rope(k) |
| 98 | + } |
| 99 | + |
| 100 | + let output = MLXFast.scaledDotProductAttention( |
| 101 | + queries: q, keys: k, values: v, scale: scale, mask: mask |
| 102 | + ) |
| 103 | + .transposed(0, 2, 1, 3) |
| 104 | + .reshaped(B, L, -1) |
| 105 | + |
| 106 | + return wo(output) |
| 107 | + } |
| 108 | +} |
| 109 | + |
| 110 | +private class PhiMoESparseMoeBlock: Module { |
| 111 | + let hiddenDim: Int |
| 112 | + let ffnDim: Int |
| 113 | + let numExperts: Int |
| 114 | + let topK: Int |
| 115 | + |
| 116 | + @ModuleInfo(key: "gate") var gate: Linear |
| 117 | + @ModuleInfo(key: "switch_mlp") var switchMLP: SwitchGLU |
| 118 | + |
| 119 | + init(_ args: PhiMoEConfiguration) { |
| 120 | + self.hiddenDim = args.hiddenSize |
| 121 | + self.ffnDim = args.intermediateSize |
| 122 | + self.numExperts = args.numLocalExperts |
| 123 | + self.topK = args.numExpertsPerToken |
| 124 | + |
| 125 | + self._gate.wrappedValue = Linear(hiddenDim, numExperts, bias: false) |
| 126 | + self._switchMLP.wrappedValue = SwitchGLU( |
| 127 | + inputDims: hiddenDim, hiddenDims: ffnDim, numExperts: numExperts) |
| 128 | + } |
| 129 | + |
| 130 | + func callAsFunction(_ x: MLXArray) -> MLXArray { |
| 131 | + let gates = gate(x) |
| 132 | + |
| 133 | + let k = self.topK |
| 134 | + let inds = MLX.stopGradient( |
| 135 | + MLX.argPartition( |
| 136 | + -gates, |
| 137 | + kth: k - 1, |
| 138 | + axis: -1 |
| 139 | + )[.ellipsis, ..<k]) |
| 140 | + let scores = MLX.softmax(MLX.takeAlong(gates, inds, axis: -1), axis: -1, precise: true) |
| 141 | + |
| 142 | + let y = switchMLP(x, inds) |
| 143 | + return (y * scores[.ellipsis, .newAxis]).sum(axis: -2) |
| 144 | + } |
| 145 | +} |
| 146 | + |
| 147 | +private class PhiMoEDecoderLayer: Module { |
| 148 | + let hiddenSize: Int |
| 149 | + |
| 150 | + @ModuleInfo(key: "self_attn") var selfAttn: Attention |
| 151 | + @ModuleInfo(key: "block_sparse_moe") var blockSparseMoe: PhiMoESparseMoeBlock |
| 152 | + @ModuleInfo(key: "input_layernorm") var inputLayerNorm: LayerNorm |
| 153 | + @ModuleInfo(key: "post_attention_layernorm") var postAttentionLayerNorm: LayerNorm |
| 154 | + |
| 155 | + init(_ args: PhiMoEConfiguration) { |
| 156 | + self.hiddenSize = args.hiddenSize |
| 157 | + |
| 158 | + self._selfAttn.wrappedValue = Attention(args) |
| 159 | + self._blockSparseMoe.wrappedValue = PhiMoESparseMoeBlock(args) |
| 160 | + self._inputLayerNorm.wrappedValue = LayerNorm( |
| 161 | + dimensions: args.hiddenSize, eps: args.rmsNormEps) |
| 162 | + self._postAttentionLayerNorm.wrappedValue = LayerNorm( |
| 163 | + dimensions: args.hiddenSize, eps: args.rmsNormEps) |
| 164 | + } |
| 165 | + |
| 166 | + func callAsFunction(_ x: MLXArray, mask: MLXArray? = nil, cache: KVCache?) -> MLXArray { |
| 167 | + var residual = x |
| 168 | + var hiddenStates = inputLayerNorm(x) |
| 169 | + hiddenStates = selfAttn(hiddenStates, mask: mask, cache: cache) |
| 170 | + hiddenStates = residual + hiddenStates |
| 171 | + |
| 172 | + residual = hiddenStates |
| 173 | + hiddenStates = postAttentionLayerNorm(hiddenStates) |
| 174 | + hiddenStates = blockSparseMoe(hiddenStates) |
| 175 | + hiddenStates = residual + hiddenStates |
| 176 | + |
| 177 | + return hiddenStates |
| 178 | + } |
| 179 | +} |
| 180 | + |
| 181 | +private class PhiMoEModelInner: Module { |
| 182 | + let args: PhiMoEConfiguration |
| 183 | + |
| 184 | + @ModuleInfo(key: "embed_tokens") var embedTokens: Embedding |
| 185 | + let layers: [PhiMoEDecoderLayer] |
| 186 | + @ModuleInfo(key: "norm") var norm: LayerNorm |
| 187 | + |
| 188 | + init(_ args: PhiMoEConfiguration) { |
| 189 | + self.args = args |
| 190 | + |
| 191 | + self._embedTokens.wrappedValue = Embedding( |
| 192 | + embeddingCount: args.vocabularySize, dimensions: args.hiddenSize) |
| 193 | + self.layers = (0 ..< args.hiddenLayers).map { _ in PhiMoEDecoderLayer(args) } |
| 194 | + self._norm.wrappedValue = LayerNorm(dimensions: args.hiddenSize, eps: args.rmsNormEps) |
| 195 | + } |
| 196 | + |
| 197 | + func callAsFunction(_ inputs: MLXArray, cache: [KVCache]?) -> MLXArray { |
| 198 | + var h = embedTokens(inputs) |
| 199 | + |
| 200 | + let mask = createAttentionMask(h: h, cache: cache) |
| 201 | + |
| 202 | + for (i, layer) in layers.enumerated() { |
| 203 | + h = layer(h, mask: mask, cache: cache?[i]) |
| 204 | + } |
| 205 | + |
| 206 | + return norm(h) |
| 207 | + } |
| 208 | +} |
| 209 | + |
| 210 | +public class PhiMoEModel: Module, LLMModel, KVCacheDimensionProvider { |
| 211 | + public let vocabularySize: Int |
| 212 | + public let kvHeads: [Int] |
| 213 | + public let headDim: IntOrPair |
| 214 | + |
| 215 | + fileprivate let model: PhiMoEModelInner |
| 216 | + @ModuleInfo(key: "lm_head") var lmHead: Linear |
| 217 | + |
| 218 | + public init(_ args: PhiMoEConfiguration) { |
| 219 | + self.vocabularySize = args.vocabularySize |
| 220 | + self.kvHeads = Array(repeating: args.kvHeads, count: args.hiddenLayers) |
| 221 | + self.headDim = .init(args.hiddenSize / args.attentionHeads) |
| 222 | + self.model = PhiMoEModelInner(args) |
| 223 | + self._lmHead.wrappedValue = Linear(args.hiddenSize, args.vocabularySize, bias: true) |
| 224 | + } |
| 225 | + |
| 226 | + public func callAsFunction(_ inputs: MLXArray, cache: [KVCache]?) -> MLXArray { |
| 227 | + let out = model(inputs, cache: cache) |
| 228 | + return lmHead(out) |
| 229 | + } |
| 230 | + |
| 231 | + public func sanitize(weights: [String: MLXArray]) -> [String: MLXArray] { |
| 232 | + var sanitizedWeights = weights |
| 233 | + if sanitizedWeights["model.layers.0.block_sparse_moe.experts.0.w1.weight"] == nil { |
| 234 | + return sanitizedWeights |
| 235 | + } |
| 236 | + |
| 237 | + for l in 0 ..< model.args.hiddenLayers { |
| 238 | + let prefix = "model.layers.\(l)" |
| 239 | + for (n, m) in [("w1", "gate_proj"), ("w2", "down_proj"), ("w3", "up_proj")] { |
| 240 | + for k in ["weight", "scales", "biases"] { |
| 241 | + if sanitizedWeights["\(prefix).block_sparse_moe.experts.0.\(n).\(k)"] != nil { |
| 242 | + let toJoin = (0 ..< model.args.numLocalExperts).map { e in |
| 243 | + sanitizedWeights.removeValue( |
| 244 | + forKey: "\(prefix).block_sparse_moe.experts.\(e).\(n).\(k)")! |
| 245 | + } |
| 246 | + sanitizedWeights["\(prefix).block_sparse_moe.switch_mlp.\(m).\(k)"] = |
| 247 | + MLX.stacked(toJoin) |
| 248 | + } |
| 249 | + } |
| 250 | + } |
| 251 | + } |
| 252 | + |
| 253 | + return sanitizedWeights |
| 254 | + } |
| 255 | +} |
| 256 | + |
| 257 | +// MARK: - LoRA |
| 258 | + |
| 259 | +extension PhiMoEModel: LoRAModel { |
| 260 | + public func loraLinearLayers() -> LoRALinearLayers { |
| 261 | + model.layers.map { ($0.selfAttn, ["q_proj", "v_proj"]) } |
| 262 | + } |
| 263 | +} |
0 commit comments