|
| 1 | +# Copyright © 2025 Apple Inc. |
| 2 | + |
| 3 | +import argparse |
| 4 | +import copy |
| 5 | +import json |
| 6 | +import math |
| 7 | + |
| 8 | +import mlx.core as mx |
| 9 | +import mlx.nn as nn |
| 10 | +import numpy as np |
| 11 | +from mlx.utils import tree_flatten, tree_map, tree_unflatten |
| 12 | +from tqdm import tqdm |
| 13 | + |
| 14 | +from mlx_lm.quant.utils import load_data |
| 15 | +from mlx_lm.utils import ( |
| 16 | + compute_bits_per_weight, |
| 17 | + fetch_from_hub, |
| 18 | + get_model_path, |
| 19 | + quantize_model, |
| 20 | + save, |
| 21 | +) |
| 22 | + |
| 23 | + |
| 24 | +def eval_ppl(model, data, batch_size=8): |
| 25 | + all_loss = 0.0 |
| 26 | + ntoks = 0 |
| 27 | + for s in range(0, len(data), batch_size): |
| 28 | + batch = data[s : s + batch_size] |
| 29 | + logits = model(batch[:, :-1]).astype(mx.float32) |
| 30 | + losses = nn.losses.cross_entropy(logits, batch[:, 1:]) |
| 31 | + all_loss += losses.sum().item() |
| 32 | + ntoks += losses.size |
| 33 | + ppl = math.exp(all_loss / ntoks) |
| 34 | + return ppl |
| 35 | + |
| 36 | + |
| 37 | +def estimate_sensitivities( |
| 38 | + model, |
| 39 | + data, |
| 40 | + low_bits, |
| 41 | + low_group_size, |
| 42 | + high_bits, |
| 43 | + high_group_size, |
| 44 | +): |
| 45 | + batch_size = 4 |
| 46 | + layers = tree_flatten(model.leaf_modules(), is_leaf=nn.Module.is_module) |
| 47 | + layers = {k: l for k, l in layers if hasattr(l, "to_quantized")} |
| 48 | + |
| 49 | + q_model = copy.deepcopy(model) |
| 50 | + |
| 51 | + def qdq(w, bits, group_size): |
| 52 | + w, s, b = mx.quantize(w, bits=bits, group_size=group_size) |
| 53 | + return mx.dequantize(w, scales=s, biases=b, bits=bits, group_size=group_size) |
| 54 | + |
| 55 | + q_layers = copy.deepcopy(layers) |
| 56 | + for l in q_layers.values(): |
| 57 | + l.weight = qdq(l.weight, low_bits, low_group_size) |
| 58 | + q_model.freeze() |
| 59 | + q_model.update_modules(tree_unflatten(list(q_layers.items()))) |
| 60 | + |
| 61 | + def log_norm(x): |
| 62 | + x = x.astype(mx.float32) |
| 63 | + return x - mx.logsumexp(x, axis=-1, keepdims=True) |
| 64 | + |
| 65 | + def loss_fn(batch, targets): |
| 66 | + logprobs = log_norm(q_model(batch)) |
| 67 | + return nn.losses.kl_div_loss(logprobs, targets, reduction="mean") |
| 68 | + |
| 69 | + grad_accum = tree_map(lambda x: mx.zeros(x.shape), q_model.trainable_parameters()) |
| 70 | + for e, s in tqdm( |
| 71 | + enumerate(range(0, len(data), batch_size)), |
| 72 | + total=len(data) // batch_size, |
| 73 | + desc="Estimating sensitivities", |
| 74 | + ): |
| 75 | + batch = data[s : s + batch_size] |
| 76 | + targets = log_norm(model(batch)) |
| 77 | + mx.eval(targets) |
| 78 | + _, grads = nn.value_and_grad(q_model, loss_fn)(batch, targets) |
| 79 | + grad_accum = tree_map(lambda x, y: x + y, grad_accum, grads) |
| 80 | + mx.eval(grad_accum) |
| 81 | + |
| 82 | + def compute_sensitivity(gradient, low_q_weight, original_weight): |
| 83 | + n_batches = (len(data) + batch_size - 1) // batch_size |
| 84 | + gradient = gradient / n_batches |
| 85 | + high_q_weight = qdq(original_weight, high_bits, high_group_size) |
| 86 | + param_size = original_weight.size / 1e6 |
| 87 | + alignment = (gradient * (low_q_weight - high_q_weight)).sum() |
| 88 | + return alignment / param_size |
| 89 | + |
| 90 | + sensitivities = tree_map( |
| 91 | + compute_sensitivity, |
| 92 | + grad_accum, |
| 93 | + q_model.parameters(), |
| 94 | + model.parameters(), |
| 95 | + ) |
| 96 | + mx.eval(sensitivities) |
| 97 | + |
| 98 | + sensitivities = [(k[:-7], s.item()) for k, s in tree_flatten(sensitivities)] |
| 99 | + |
| 100 | + return sensitivities |
| 101 | + |
| 102 | + |
| 103 | +def estimate_threshold( |
| 104 | + model, |
| 105 | + sensitivities, |
| 106 | + target_bpw, |
| 107 | + low_bits, |
| 108 | + low_group_size, |
| 109 | + high_bits, |
| 110 | + high_group_size, |
| 111 | +): |
| 112 | + def predicate(p, m, high_threshold): |
| 113 | + if not hasattr(m, "to_quantized"): |
| 114 | + return False |
| 115 | + if sensitivities[p] > high_threshold: |
| 116 | + return {"bits": high_bits, "group_size": high_group_size} |
| 117 | + return True |
| 118 | + |
| 119 | + # Binary search for the threshold |
| 120 | + sens_vals = list(sensitivities.values()) |
| 121 | + min_threshold = min(sens_vals) |
| 122 | + max_threshold = max(sens_vals) |
| 123 | + tolerance = 1e-3 * (max_threshold - min_threshold) |
| 124 | + while (max_threshold - min_threshold) > tolerance: |
| 125 | + mid = (max_threshold + min_threshold) / 2 |
| 126 | + class_predicate = lambda p, m: predicate(p, m, mid) |
| 127 | + q_model = copy.deepcopy(model) |
| 128 | + nn.quantize( |
| 129 | + q_model, |
| 130 | + group_size=low_group_size, |
| 131 | + bits=low_bits, |
| 132 | + class_predicate=class_predicate, |
| 133 | + ) |
| 134 | + bpw = compute_bits_per_weight(q_model) |
| 135 | + if bpw > target_bpw: |
| 136 | + min_threshold = mid |
| 137 | + else: |
| 138 | + max_threshold = mid |
| 139 | + |
| 140 | + return (max_threshold + min_threshold) / 2 |
| 141 | + |
| 142 | + |
| 143 | +def main(): |
| 144 | + parser = argparse.ArgumentParser() |
| 145 | + parser.add_argument("--model", "-m", default="Qwen/Qwen3-0.6B-base") |
| 146 | + parser.add_argument( |
| 147 | + "--mlx-path", default="mlx_model", help="Path to save the model" |
| 148 | + ) |
| 149 | + parser.add_argument("--seed", type=int, default=123) |
| 150 | + parser.add_argument( |
| 151 | + "--sensitivities", |
| 152 | + type=str, |
| 153 | + default=None, |
| 154 | + help="Path to a pre-computed sensitivity JSON file.", |
| 155 | + ) |
| 156 | + parser.add_argument( |
| 157 | + "--target-bpw", type=float, default=5.0, help="Target bits per weight." |
| 158 | + ) |
| 159 | + parser.add_argument("--low-bits", type=int, default=4) |
| 160 | + parser.add_argument("--low-group-size", type=int, default=64) |
| 161 | + parser.add_argument("--high-bits", type=int, default=5) |
| 162 | + parser.add_argument("--high-group-size", type=int, default=64) |
| 163 | + parser.add_argument( |
| 164 | + "--report-ppl", |
| 165 | + action="store_true", |
| 166 | + help="Compute the perplexity of the base and quantized models.", |
| 167 | + ) |
| 168 | + |
| 169 | + args = parser.parse_args() |
| 170 | + |
| 171 | + group = mx.distributed.init() |
| 172 | + |
| 173 | + if args.sensitivities is None: |
| 174 | + model_path = get_model_path(args.model, revision=None) |
| 175 | + model, config, tokenizer = fetch_from_hub(model_path, lazy=True) |
| 176 | + mx.random.seed(args.seed) |
| 177 | + data = load_data(tokenizer, num_samples=-1, sequence_length=512) |
| 178 | + |
| 179 | + sensitivities = estimate_sensitivities( |
| 180 | + model, |
| 181 | + data, |
| 182 | + args.low_bits, |
| 183 | + args.low_group_size, |
| 184 | + args.high_bits, |
| 185 | + args.high_group_size, |
| 186 | + ) |
| 187 | + model_name = args.model.replace("/", "_") |
| 188 | + with open(f"{model_name}_sensitivities.json", "w") as fid: |
| 189 | + json.dump(sensitivities, fid) |
| 190 | + else: |
| 191 | + with open(args.sensitivities, "r") as fid: |
| 192 | + sensitivities = json.load(fid) |
| 193 | + |
| 194 | + sensitivities = dict(sensitivities) |
| 195 | + model_path = get_model_path(args.model, revision=None) |
| 196 | + model, config, tokenizer = fetch_from_hub(model_path, lazy=True) |
| 197 | + mx.random.seed(args.seed) |
| 198 | + data = load_data(tokenizer, num_samples=-1, sequence_length=512) |
| 199 | + |
| 200 | + if args.report_ppl: |
| 201 | + ppl = eval_ppl(model, data) |
| 202 | + print(f"Original PPL: {ppl:.3f}") |
| 203 | + |
| 204 | + threshold = estimate_threshold( |
| 205 | + model, |
| 206 | + sensitivities, |
| 207 | + target_bpw=args.target_bpw, |
| 208 | + low_bits=args.low_bits, |
| 209 | + low_group_size=args.low_group_size, |
| 210 | + high_bits=args.high_bits, |
| 211 | + high_group_size=args.high_group_size, |
| 212 | + ) |
| 213 | + |
| 214 | + def quant_predicate(p, m, _): |
| 215 | + if not hasattr(m, "to_quantized"): |
| 216 | + return False |
| 217 | + if sensitivities[p] > threshold: |
| 218 | + return {"bits": args.high_bits, "group_size": args.high_group_size} |
| 219 | + return True |
| 220 | + |
| 221 | + model, config = quantize_model( |
| 222 | + model, |
| 223 | + config, |
| 224 | + q_group_size=args.low_group_size, |
| 225 | + q_bits=args.low_bits, |
| 226 | + quant_predicate=quant_predicate, |
| 227 | + ) |
| 228 | + |
| 229 | + if args.report_ppl: |
| 230 | + ppl = eval_ppl(model, data) |
| 231 | + print(f"Quantized PPL: {ppl:.3f}") |
| 232 | + |
| 233 | + save( |
| 234 | + args.mlx_path, |
| 235 | + model_path, |
| 236 | + model, |
| 237 | + tokenizer, |
| 238 | + config, |
| 239 | + hf_repo=args.model, |
| 240 | + ) |
| 241 | + |
| 242 | + |
| 243 | +if __name__ == "__main__": |
| 244 | + main() |
0 commit comments