|
| 1 | +import torch |
| 2 | + |
| 3 | +from torch.nn.functional import one_hot |
| 4 | +from torch.utils.data import DataLoader, random_split |
| 5 | +from torchvision.datasets import CIFAR10 # type: ignore |
| 6 | +from torchvision.transforms import Compose, ToTensor, Lambda # type: ignore |
| 7 | + |
| 8 | +from fflib.utils.data import FFDataProcessor |
| 9 | +from fflib.interfaces.iff import IFF |
| 10 | + |
| 11 | +from enum import Enum |
| 12 | +from typing import Tuple, Dict, Callable, Any |
| 13 | + |
| 14 | + |
| 15 | +class NegativeGenerator(Enum): |
| 16 | + INVERSE = 1 |
| 17 | + RANDOM = 2 |
| 18 | + HIGHEST_INCORRECT = 3 |
| 19 | + |
| 20 | + |
| 21 | +class FFCIFAR10(FFDataProcessor): |
| 22 | + def __init__( |
| 23 | + self, |
| 24 | + batch_size: int, |
| 25 | + validation_split: float | None, |
| 26 | + download: bool = True, |
| 27 | + path: str = "./data", |
| 28 | + image_transform: Callable[..., Any] = Compose([ToTensor(), Lambda(torch.flatten)]), |
| 29 | + train_kwargs: Dict[str, Any] = {}, |
| 30 | + test_kwargs: Dict[str, Any] = {}, |
| 31 | + negative_generator: NegativeGenerator = NegativeGenerator.INVERSE, |
| 32 | + use: float = 1.0, |
| 33 | + ): |
| 34 | + |
| 35 | + assert isinstance(batch_size, int) |
| 36 | + assert batch_size > 0 |
| 37 | + self.batch_size = batch_size |
| 38 | + if "batch_size" not in train_kwargs: |
| 39 | + train_kwargs["batch_size"] = self.batch_size |
| 40 | + if "batch_size" not in test_kwargs: |
| 41 | + test_kwargs["batch_size"] = self.batch_size |
| 42 | + |
| 43 | + train_kwargs["shuffle"] = True |
| 44 | + |
| 45 | + assert use >= 0.0 and use <= 1.0 |
| 46 | + |
| 47 | + self.validation_split = validation_split |
| 48 | + self.download = download |
| 49 | + self.path = path |
| 50 | + self.image_transform = image_transform |
| 51 | + self.train_kwargs = train_kwargs |
| 52 | + self.test_kwargs = test_kwargs |
| 53 | + self.negative_generator = negative_generator |
| 54 | + self.use = use |
| 55 | + |
| 56 | + self.train_dataset = CIFAR10( |
| 57 | + self.path, train=True, download=self.download, transform=self.image_transform |
| 58 | + ) |
| 59 | + self.test_dataset = CIFAR10( |
| 60 | + self.path, train=False, download=self.download, transform=self.image_transform |
| 61 | + ) |
| 62 | + self.test_loader = DataLoader(self.test_dataset, **self.test_kwargs) |
| 63 | + |
| 64 | + dataset_size = len(self.train_dataset) |
| 65 | + used_dataset_size = int(dataset_size * self.use) |
| 66 | + not_used_dataset_size = dataset_size - used_dataset_size |
| 67 | + |
| 68 | + # In case a validation split is given |
| 69 | + if self.validation_split: |
| 70 | + # Determine the sizes of training and validation sets |
| 71 | + val_size = int(self.validation_split * used_dataset_size) |
| 72 | + train_size = used_dataset_size - val_size |
| 73 | + |
| 74 | + # Split dataset into train and validation sets |
| 75 | + train_dataset, val_dataset, _ = random_split( |
| 76 | + self.train_dataset, [train_size, val_size, not_used_dataset_size] |
| 77 | + ) |
| 78 | + |
| 79 | + # Create data loaders for train and validation |
| 80 | + self.train_loader = DataLoader(train_dataset, **self.train_kwargs) |
| 81 | + self.val_loader = DataLoader(val_dataset, **self.test_kwargs) |
| 82 | + |
| 83 | + assert len(self.train_loader) + len(self.val_loader) <= used_dataset_size |
| 84 | + return |
| 85 | + |
| 86 | + train_dataset, _ = random_split( |
| 87 | + self.train_dataset, [used_dataset_size, not_used_dataset_size] |
| 88 | + ) |
| 89 | + self.train_loader = DataLoader(train_dataset, **self.train_kwargs) |
| 90 | + |
| 91 | + def get_input_shape(self) -> torch.Size: |
| 92 | + return torch.Size((32 * 32 * 3,)) |
| 93 | + |
| 94 | + def get_output_shape(self) -> torch.Size: |
| 95 | + return torch.Size((10,)) |
| 96 | + |
| 97 | + def get_train_loader(self) -> DataLoader[Any]: |
| 98 | + return self.train_loader |
| 99 | + |
| 100 | + def get_val_loader(self) -> DataLoader[Any]: |
| 101 | + return self.val_loader |
| 102 | + |
| 103 | + def get_test_loader(self) -> DataLoader[Any]: |
| 104 | + return self.test_loader |
| 105 | + |
| 106 | + def get_all_loaders(self) -> Dict[str, DataLoader[Any]]: |
| 107 | + return { |
| 108 | + "train": self.get_train_loader(), |
| 109 | + "val": self.get_val_loader(), |
| 110 | + "test": self.get_test_loader(), |
| 111 | + } |
| 112 | + |
| 113 | + def encode_output(self, y: torch.Tensor) -> torch.Tensor: |
| 114 | + return one_hot(y, num_classes=10).float() |
| 115 | + |
| 116 | + def combine_to_input(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: |
| 117 | + return torch.cat((x, y), 1) |
| 118 | + |
| 119 | + def generate_negative( |
| 120 | + self, |
| 121 | + x: torch.Tensor, |
| 122 | + y: torch.Tensor, |
| 123 | + net: IFF, |
| 124 | + ) -> Tuple[torch.Tensor, torch.Tensor]: |
| 125 | + |
| 126 | + if self.negative_generator == NegativeGenerator.HIGHEST_INCORRECT: |
| 127 | + raise NotImplementedError() |
| 128 | + |
| 129 | + if self.negative_generator == NegativeGenerator.INVERSE: |
| 130 | + y_hot = 1 - one_hot(y, num_classes=10).float() |
| 131 | + return x, y_hot |
| 132 | + |
| 133 | + rnd = torch.rand((x.shape[0], 10), device=x.device) |
| 134 | + rnd[torch.arange(x.shape[0]), y] = 0 |
| 135 | + y_new = rnd.argmax(1) |
| 136 | + y_hot = one_hot(y_new, num_classes=10).float() |
| 137 | + return x, y_hot |
0 commit comments