|
| 1 | +// This file is part of MinIO Console Server |
| 2 | +// Copyright (c) 2020 MinIO, Inc. |
| 3 | +// |
| 4 | +// This program is free software: you can redistribute it and/or modify |
| 5 | +// it under the terms of the GNU Affero General Public License as published by |
| 6 | +// the Free Software Foundation, either version 3 of the License, or |
| 7 | +// (at your option) any later version. |
| 8 | +// |
| 9 | +// This program is distributed in the hope that it will be useful, |
| 10 | +// but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | +// GNU Affero General Public License for more details. |
| 13 | +// |
| 14 | +// You should have received a copy of the GNU Affero General Public License |
| 15 | +// along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 16 | + |
| 17 | +package utils |
| 18 | + |
| 19 | +import ( |
| 20 | + "errors" |
| 21 | + "fmt" |
| 22 | + "sort" |
| 23 | + |
| 24 | + "github.com/minio/minio/pkg/ellipses" |
| 25 | +) |
| 26 | + |
| 27 | +// This file implements and supports ellipses pattern for |
| 28 | +// `minio server` command line arguments. |
| 29 | + |
| 30 | +// Supported set sizes this is used to find the optimal |
| 31 | +// single set size. |
| 32 | +var setSizes = []uint64{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} |
| 33 | + |
| 34 | +// getDivisibleSize - returns a greatest common divisor of |
| 35 | +// all the ellipses sizes. |
| 36 | +func getDivisibleSize(totalSizes []uint64) (result uint64) { |
| 37 | + gcd := func(x, y uint64) uint64 { |
| 38 | + for y != 0 { |
| 39 | + x, y = y, x%y |
| 40 | + } |
| 41 | + return x |
| 42 | + } |
| 43 | + result = totalSizes[0] |
| 44 | + for i := 1; i < len(totalSizes); i++ { |
| 45 | + result = gcd(result, totalSizes[i]) |
| 46 | + } |
| 47 | + return result |
| 48 | +} |
| 49 | + |
| 50 | +// isValidSetSize - checks whether given count is a valid set size for erasure coding. |
| 51 | +var isValidSetSize = func(count uint64) bool { |
| 52 | + return (count >= setSizes[0] && count <= setSizes[len(setSizes)-1]) |
| 53 | +} |
| 54 | + |
| 55 | +// possibleSetCountsWithSymmetry returns symmetrical setCounts based on the |
| 56 | +// input argument patterns, the symmetry calculation is to ensure that |
| 57 | +// we also use uniform number of drives common across all ellipses patterns. |
| 58 | +func possibleSetCountsWithSymmetry(setCounts []uint64, argPatterns []ellipses.ArgPattern) []uint64 { |
| 59 | + var newSetCounts = make(map[uint64]struct{}) |
| 60 | + for _, ss := range setCounts { |
| 61 | + var symmetry bool |
| 62 | + for _, argPattern := range argPatterns { |
| 63 | + for _, p := range argPattern { |
| 64 | + if uint64(len(p.Seq)) > ss { |
| 65 | + symmetry = uint64(len(p.Seq))%ss == 0 |
| 66 | + } else { |
| 67 | + symmetry = ss%uint64(len(p.Seq)) == 0 |
| 68 | + } |
| 69 | + } |
| 70 | + } |
| 71 | + // With no arg patterns, it is expected that user knows |
| 72 | + // the right symmetry, so either ellipses patterns are |
| 73 | + // provided (recommended) or no ellipses patterns. |
| 74 | + if _, ok := newSetCounts[ss]; !ok && (symmetry || argPatterns == nil) { |
| 75 | + newSetCounts[ss] = struct{}{} |
| 76 | + } |
| 77 | + } |
| 78 | + |
| 79 | + setCounts = []uint64{} |
| 80 | + for setCount := range newSetCounts { |
| 81 | + setCounts = append(setCounts, setCount) |
| 82 | + } |
| 83 | + |
| 84 | + // Not necessarily needed but it ensures to the readers |
| 85 | + // eyes that we prefer a sorted setCount slice for the |
| 86 | + // subsequent function to figure out the right common |
| 87 | + // divisor, it avoids loops. |
| 88 | + sort.Slice(setCounts, func(i, j int) bool { |
| 89 | + return setCounts[i] < setCounts[j] |
| 90 | + }) |
| 91 | + |
| 92 | + return setCounts |
| 93 | +} |
| 94 | + |
| 95 | +func commonSetDriveCount(divisibleSize uint64, setCounts []uint64) (setSize uint64) { |
| 96 | + // prefers setCounts to be sorted for optimal behavior. |
| 97 | + if divisibleSize < setCounts[len(setCounts)-1] { |
| 98 | + return divisibleSize |
| 99 | + } |
| 100 | + |
| 101 | + // Figure out largest value of total_drives_in_erasure_set which results |
| 102 | + // in least number of total_drives/total_drives_erasure_set ratio. |
| 103 | + prevD := divisibleSize / setCounts[0] |
| 104 | + for _, cnt := range setCounts { |
| 105 | + if divisibleSize%cnt == 0 { |
| 106 | + d := divisibleSize / cnt |
| 107 | + if d <= prevD { |
| 108 | + prevD = d |
| 109 | + setSize = cnt |
| 110 | + } |
| 111 | + } |
| 112 | + } |
| 113 | + return setSize |
| 114 | +} |
| 115 | + |
| 116 | +// getSetIndexes returns list of indexes which provides the set size |
| 117 | +// on each index, this function also determines the final set size |
| 118 | +// The final set size has the affinity towards choosing smaller |
| 119 | +// indexes (total sets) |
| 120 | +func getSetIndexes(args []string, totalSizes []uint64, argPatterns []ellipses.ArgPattern) (setIndexes [][]uint64, err error) { |
| 121 | + if len(totalSizes) == 0 || len(args) == 0 { |
| 122 | + return nil, errors.New("invalid argument") |
| 123 | + } |
| 124 | + |
| 125 | + setIndexes = make([][]uint64, len(totalSizes)) |
| 126 | + for _, totalSize := range totalSizes { |
| 127 | + // Check if totalSize has minimum range upto setSize |
| 128 | + if totalSize < setSizes[0] { |
| 129 | + return nil, fmt.Errorf("incorrect number of endpoints provided %s", args) |
| 130 | + } |
| 131 | + } |
| 132 | + |
| 133 | + commonSize := getDivisibleSize(totalSizes) |
| 134 | + possibleSetCounts := func(setSize uint64) (ss []uint64) { |
| 135 | + for _, s := range setSizes { |
| 136 | + if setSize%s == 0 { |
| 137 | + ss = append(ss, s) |
| 138 | + } |
| 139 | + } |
| 140 | + return ss |
| 141 | + } |
| 142 | + |
| 143 | + setCounts := possibleSetCounts(commonSize) |
| 144 | + if len(setCounts) == 0 { |
| 145 | + err = fmt.Errorf("incorrect number of endpoints provided %s, number of disks %d is not divisible by any supported erasure set sizes %d", args, commonSize, setSizes) |
| 146 | + return nil, err |
| 147 | + } |
| 148 | + |
| 149 | + // Returns possible set counts with symmetry. |
| 150 | + setCounts = possibleSetCountsWithSymmetry(setCounts, argPatterns) |
| 151 | + if len(setCounts) == 0 { |
| 152 | + err = fmt.Errorf("no symmetric distribution detected with input endpoints provided %s, disks %d cannot be spread symmetrically by any supported erasure set sizes %d", args, commonSize, setSizes) |
| 153 | + return nil, err |
| 154 | + } |
| 155 | + |
| 156 | + // Final set size with all the symmetry accounted for. |
| 157 | + setSize := commonSetDriveCount(commonSize, setCounts) |
| 158 | + |
| 159 | + // Check whether setSize is with the supported range. |
| 160 | + if !isValidSetSize(setSize) { |
| 161 | + err = fmt.Errorf("incorrect number of endpoints provided %s, number of disks %d is not divisible by any supported erasure set sizes %d", args, commonSize, setSizes) |
| 162 | + return nil, err |
| 163 | + } |
| 164 | + |
| 165 | + for i := range totalSizes { |
| 166 | + for j := uint64(0); j < totalSizes[i]/setSize; j++ { |
| 167 | + setIndexes[i] = append(setIndexes[i], setSize) |
| 168 | + } |
| 169 | + } |
| 170 | + |
| 171 | + return setIndexes, nil |
| 172 | +} |
| 173 | + |
| 174 | +// Return the total size for each argument patterns. |
| 175 | +func getTotalSizes(argPatterns []ellipses.ArgPattern) []uint64 { |
| 176 | + var totalSizes []uint64 |
| 177 | + for _, argPattern := range argPatterns { |
| 178 | + var totalSize uint64 = 1 |
| 179 | + for _, p := range argPattern { |
| 180 | + totalSize = totalSize * uint64(len(p.Seq)) |
| 181 | + } |
| 182 | + totalSizes = append(totalSizes, totalSize) |
| 183 | + } |
| 184 | + return totalSizes |
| 185 | +} |
| 186 | + |
| 187 | +// PossibleParityValues returns possible parities for input args, |
| 188 | +// parties are calculated in uniform manner for one zone or |
| 189 | +// multiple zones, ensuring that parities returned are common |
| 190 | +// and applicable across all zones. |
| 191 | +func PossibleParityValues(args ...string) ([]string, error) { |
| 192 | + setIndexes, err := parseEndpointSet(args...) |
| 193 | + if err != nil { |
| 194 | + return nil, err |
| 195 | + } |
| 196 | + maximumParity := setIndexes[0][0] / 2 |
| 197 | + var parities []string |
| 198 | + for maximumParity >= 2 { |
| 199 | + parities = append(parities, fmt.Sprintf("EC:%d", maximumParity)) |
| 200 | + maximumParity-- |
| 201 | + } |
| 202 | + return parities, nil |
| 203 | +} |
| 204 | + |
| 205 | +// Parses all arguments and returns an endpointSet which is a collection |
| 206 | +// of endpoints following the ellipses pattern, this is what is used |
| 207 | +// by the object layer for initializing itself. |
| 208 | +func parseEndpointSet(args ...string) (setIndexes [][]uint64, err error) { |
| 209 | + var argPatterns = make([]ellipses.ArgPattern, len(args)) |
| 210 | + for i, arg := range args { |
| 211 | + patterns, err := ellipses.FindEllipsesPatterns(arg) |
| 212 | + if err != nil { |
| 213 | + return nil, err |
| 214 | + } |
| 215 | + argPatterns[i] = patterns |
| 216 | + } |
| 217 | + |
| 218 | + return getSetIndexes(args, getTotalSizes(argPatterns), argPatterns) |
| 219 | +} |
0 commit comments