diff --git a/README.md b/README.md index 8f6854e..80fdc33 100644 --- a/README.md +++ b/README.md @@ -32,7 +32,7 @@ textgen.generate() The included model can easily be trained on new texts, and can generate appropriate text *even after a single pass of the input data*. ```python -textgen.train_from_file('hacker-news-2000.txt', num_epochs=1) +textgen.train_from_file('hacker_news_2000.txt', num_epochs=1) textgen.generate() ``` @@ -79,7 +79,7 @@ This can add a *human touch* to the output; it feels like you're the writer! ([r textgenrnn can be installed [from pypi](https://pypi.python.org/pypi/textgenrnn) via `pip`: ```sh -pip3 install textgenrnn +pip3 install textgenrnn tensorflow ``` You can view a demo of common features and model configuration options in [this Jupyter Notebook](/docs/textgenrnn-demo.ipynb). @@ -156,4 +156,4 @@ Andrej Karpathy for the original proposal of the char-rnn via the blog post [The MIT -Attention-layer code used from [DeepMoji](https://github.com/bfelbo/DeepMoji) (MIT Licensed) \ No newline at end of file +Attention-layer code used from [DeepMoji](https://github.com/bfelbo/DeepMoji) (MIT Licensed)