@@ -40,12 +40,12 @@ Here is the development plan of the project:
4040
4141| MindSpore | Ascend Driver | Firmware | CANN toolkit/kernel |
4242| :---------:| :-------------:| :-----------:| :-------------------:|
43- | 2.6.0 | 24.1.RC3 | 7.6.0.1.220 | 8.0.RC3.beta1 |
43+ | 2.6.0/2.7.0 | 24.1.RC3.b080 | 7.5.T11.0.B088 | 8.1.RC1 |
4444
4545</div >
4646
47471 . Install
48- [ CANN 8.0.RC3.beta1 ] ( https://www.hiascend.com/developer/download/community/result?module=cann&cann=8.0.RC3.beta1 )
48+ [ CANN 8.1.RC1 ] ( https://www.hiascend.com/developer/download/community/result?module=cann&cann=8.1.RC1 )
4949 and MindSpore according to the [ official instructions] ( https://www.mindspore.cn/install ) .
50502 . Install requirements
5151 ``` shell
@@ -98,7 +98,7 @@ python generate.py
9898
9999# ## 2. MultiModal Generation
100100
101- For multiModal generation, please run:
101+ For multimodal generation, please run:
102102```
103103python3 inference_mmu.py config=configs/mmada_demo.yaml mmu_image_root=./mmu_validation question='Please describe this image in detail.'
104104```
@@ -109,10 +109,28 @@ The outputs are stored locally.
109109For text-to-image generation, please run:
110110```
111111python3 inference_t2i.py config=configs/mmada_demo.yaml batch_size=1 validation_prompts_file=validation_prompts/text2image_prompts.txt guidance_scale=3.5 generation_timesteps=15
112- mode='t2i'
113112```
114113The outputs are stored locally.
115114
115+ ### Performance
116+
117+ The following experiments are tested on Ascend Atlas 800T A2 machines with mindspore **2.7.0** under **pynative** mode:
118+
119+ | model | # card(s) | batch size | task | throughput (token/s) |
120+ |:-:|:-:|:-:|:-:|:-:|
121+ | MMaDA-8B-Base | 1 | 1 | text generation | 12.56 |
122+ | MMaDA-8B-Base | 1 | 1 | mmu generation | 13.48 |
123+ | MMaDA-8B-Base | 1 | 1 | text-to-image generation| 167.50 |
124+
125+ The following experiments are tested on Ascend Atlas 800T A2 machines with mindspore **2.6.0** under **pynative** mode:
126+
127+ | model | # card(s) | batch size | task | throughput (token/s) |
128+ |:-:|:-:|:-:|:-:|:-:|
129+ | MMaDA-8B-Base | 1 | 1 | text generation | 12.53 |
130+ | MMaDA-8B-Base | 1 | 1 | mmu generation | 13.50 |
131+ | MMaDA-8B-Base | 1 | 1 | text-to-image generation| 168.60 |
132+
133+
116134## 🔧 Training
117135
118136
@@ -164,6 +182,21 @@ msrun --bind_core=True --worker_num=8 --local_worker_num=8 --master_port=9000 --
164182python training/train_mmada_stage2.py config=configs/mmada_finetune_artwork.yaml
165183```
166184
185+ ### Performance
186+
187+ The following experiments are tested on Ascend Atlas 800T A2 machines with mindspore ** 2.7.0** under ** pynative** mode:
188+
189+ | model | # card(s) | batch size | parallelism | task | per batch time (seconds) |
190+ | :-:| :-:| :-:| :-:| :-:| :-:|
191+ | MMaDA-8B-Base | 8 | 4 | zero2 | finetune | 1.29 |
192+
193+ The following experiments are tested on Ascend Atlas 800T A2 machines with mindspore ** 2.6.0** under ** pynative** mode:
194+
195+ | model | # card(s) | batch size | parallelism | task | per batch time (seconds) |
196+ | :-:| :-:| :-:| :-:| :-:| :-:|
197+ | MMaDA-8B-Base | 8 | 4 | zero2 | finetune | 1.30 |
198+
199+
167200
168201## 🤝 Acknowledgments
169202
0 commit comments