|
| 1 | +#!/usr/bin/env python |
| 2 | +# coding: utf-8 |
| 3 | +""" |
| 4 | +python bert_imdb_finetune_cpu_mindnlp_trainer.py |
| 5 | +bash bert_imdb_finetune_npu_mindnlp_trainer.sh |
| 6 | +""" |
| 7 | + |
| 8 | +def main(): |
| 9 | + import mindspore |
| 10 | + from mindspore.dataset import transforms |
| 11 | + from mindnlp.engine import Trainer |
| 12 | + from mindnlp.dataset import load_dataset |
| 13 | + |
| 14 | + imdb_ds = load_dataset('imdb', split=['train', 'test']) |
| 15 | + imdb_train = imdb_ds['train'] |
| 16 | + imdb_test = imdb_ds['test'] |
| 17 | + imdb_train.get_dataset_size() |
| 18 | + from mindnlp.transformers import AutoTokenizer |
| 19 | + # tokenizer |
| 20 | + tokenizer = AutoTokenizer.from_pretrained('bert-base-cased') |
| 21 | + |
| 22 | + def process_dataset(dataset, tokenizer, max_seq_len=256, batch_size=32, shuffle=False): |
| 23 | + is_ascend = mindspore.get_context('device_target') == 'Ascend' |
| 24 | + def tokenize(text): |
| 25 | + if is_ascend: |
| 26 | + tokenized = tokenizer(text, padding='max_length', truncation=True, max_length=max_seq_len) |
| 27 | + else: |
| 28 | + tokenized = tokenizer(text, truncation=True, max_length=max_seq_len) |
| 29 | + return tokenized['input_ids'], tokenized['token_type_ids'], tokenized['attention_mask'] |
| 30 | + |
| 31 | + if shuffle: |
| 32 | + dataset = dataset.shuffle(batch_size) |
| 33 | + |
| 34 | + # map dataset |
| 35 | + dataset = dataset.map(operations=[tokenize], input_columns="text", output_columns=['input_ids', 'token_type_ids', 'attention_mask']) |
| 36 | + dataset = dataset.map(operations=transforms.TypeCast(mindspore.int32), input_columns="label", output_columns="labels") |
| 37 | + # batch dataset |
| 38 | + if is_ascend: |
| 39 | + dataset = dataset.batch(batch_size) |
| 40 | + else: |
| 41 | + dataset = dataset.padded_batch(batch_size, pad_info={'input_ids': (None, tokenizer.pad_token_id), |
| 42 | + 'token_type_ids': (None, 0), |
| 43 | + 'attention_mask': (None, 0)}) |
| 44 | + |
| 45 | + return dataset |
| 46 | + |
| 47 | + # split train dataset into train and valid datasets |
| 48 | + imdb_train, imdb_val = imdb_train.split([0.7, 0.3]) |
| 49 | + |
| 50 | + dataset_train = process_dataset(imdb_train, tokenizer, shuffle=True) |
| 51 | + dataset_val = process_dataset(imdb_val, tokenizer) |
| 52 | + dataset_test = process_dataset(imdb_test, tokenizer) |
| 53 | + |
| 54 | + next(dataset_train.create_tuple_iterator()) |
| 55 | + |
| 56 | + from mindnlp.transformers import AutoModelForSequenceClassification |
| 57 | + |
| 58 | + # set bert config and define parameters for training |
| 59 | + model = AutoModelForSequenceClassification.from_pretrained('bert-base-cased', num_labels=2) |
| 60 | + |
| 61 | + from mindnlp.engine import TrainingArguments |
| 62 | + |
| 63 | + training_args = TrainingArguments( |
| 64 | + output_dir="bert_imdb_finetune_cpu", |
| 65 | + evaluation_strategy="epoch", |
| 66 | + save_strategy="epoch", |
| 67 | + logging_strategy="epoch", |
| 68 | + load_best_model_at_end=True, |
| 69 | + num_train_epochs=2.0, |
| 70 | + learning_rate=2e-5 |
| 71 | + ) |
| 72 | + training_args = training_args.set_optimizer(name="adamw", beta1=0.8) # OptimizerNames.SGD |
| 73 | + |
| 74 | + from mindnlp import evaluate |
| 75 | + import numpy as np |
| 76 | + metric = evaluate.load("accuracy") |
| 77 | + def compute_metrics(eval_pred): |
| 78 | + logits, labels = eval_pred |
| 79 | + predictions = np.argmax(logits, axis=-1) |
| 80 | + return metric.compute(predictions=predictions, references=labels) |
| 81 | + |
| 82 | + trainer = Trainer( |
| 83 | + model=model, |
| 84 | + args=training_args, |
| 85 | + train_dataset=dataset_train, |
| 86 | + eval_dataset=dataset_val, |
| 87 | + compute_metrics=compute_metrics |
| 88 | + ) |
| 89 | + print("Start training") |
| 90 | + trainer.train() |
| 91 | + |
| 92 | + print("Start checking the test set") |
| 93 | + trainer.evaluate(dataset_test) |
| 94 | + |
| 95 | +if __name__ == '__main__': |
| 96 | + main() |
| 97 | + |
0 commit comments