Skip to content

Commit b1d710c

Browse files
committed
add minicpm3 model
1 parent c3c4e2d commit b1d710c

File tree

9 files changed

+1779
-0
lines changed

9 files changed

+1779
-0
lines changed
Lines changed: 28 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,28 @@
1+
import mindspore
2+
from mindnlp.transformers import MiniCPM3Tokenizer, MiniCPM3Config, MiniCPM3ForCausalLM
3+
from mindnlp.core import ops
4+
5+
6+
model_id = "OpenBMB/MiniCPM3-4B"
7+
tokenizer = MiniCPM3Tokenizer.from_pretrained(model_id, mirror="modelscope")
8+
model = MiniCPM3ForCausalLM.from_pretrained(model_id, ms_dtype=mindspore.float16, mirror="modelscope")
9+
10+
11+
messages = [
12+
{"role": "user", "content": "推荐5个北京的景点。"},
13+
]
14+
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="ms", add_generation_prompt=True)
15+
16+
model_outputs = model.generate(
17+
model_inputs,
18+
max_new_tokens=1024,
19+
top_p=0.7,
20+
temperature=0.7
21+
)
22+
23+
output_token_ids = [
24+
model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
25+
]
26+
27+
responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
28+
print(responses)

mindnlp/transformers/models/__init__.py

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -146,6 +146,7 @@
146146
megatron_bert,
147147
mgp_str,
148148
minicpm,
149+
minicpm3,
149150
mistral,
150151
mixtral,
151152
mobilebert,
@@ -390,6 +391,7 @@
390391
from .megatron_bert import *
391392
from .mgp_str import *
392393
from .minicpm import *
394+
from .minicpm3 import *
393395
from .mistral import *
394396
from .mixtral import *
395397
from .mobilebert import *
@@ -634,6 +636,7 @@
634636
__all__.extend(megatron_bert.__all__)
635637
__all__.extend(mgp_str.__all__)
636638
__all__.extend(minicpm.__all__)
639+
__all__.extend(minicpm3.__all__)
637640
__all__.extend(mistral.__all__)
638641
__all__.extend(mixtral.__all__)
639642
__all__.extend(mllama.__all__)

mindnlp/transformers/models/auto/configuration_auto.py

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -144,6 +144,7 @@
144144
("mctct", "MCTCTConfig"),
145145
("megatron-bert", 'MegatronBertConfig'),
146146
("minicpm", "MiniCPMConfig"),
147+
("minicpm3", "MiniCPM3Config"),
147148
("mistral", "MistralConfig"),
148149
("mixtral", "MixtralConfig"),
149150
("mllama", "MllamaConfig"),
@@ -360,6 +361,7 @@
360361
("mega", "MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
361362
("megatron-bert", "MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
362363
("mgp-str", "MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP"),
364+
("minicpm3", "MINICPM3_PRETRAINED_CONFIG_ARCHIVE_MAP"),
363365
("mistral", "MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
364366
("mixtral", "MIXTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
365367
("mobilenet_v1", "MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP"),
@@ -619,6 +621,7 @@
619621
("megatron_gpt2", "Megatron-GPT2"),
620622
("mgp-str", "MGP-STR"),
621623
("minicpm", "MiniCPM"),
624+
("minicpm3", "MiniCPM3"),
622625
("mistral", "Mistral"),
623626
("mixtral", "Mixtral"),
624627
("mllama", "Mllama"),

mindnlp/transformers/models/auto/modeling_auto.py

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -162,6 +162,7 @@
162162
("megatron-bert", "MegatronBertModel"),
163163
("mgp-str", "MgpstrForSceneTextRecognition"),
164164
('minicpm', 'MiniCPMModel'),
165+
("minicpm3", "MiniCPM3Model"),
165166
("mistral", "MistralModel"),
166167
("mixtral", "MixtralModel"),
167168
("mobilebert", "MobileBertModel"),
@@ -320,6 +321,7 @@
320321
("mega", "MegaForMaskedLM"),
321322
("megatron-bert", "MegatronBertForPreTraining"),
322323
('minicpm', 'MiniCPMForCausalLM'),
324+
('minicpm3', 'MiniCPM3ForCausalLM'),
323325
("mllama", "MllamaForConditionalGeneration"),
324326
("mobilebert", "MobileBertForPreTraining"),
325327
("mpnet", "MPNetForMaskedLM"),
@@ -407,6 +409,7 @@
407409
("mega", "MegaForMaskedLM"),
408410
("megatron-bert", "MegatronBertForCausalLM"),
409411
('minicpm', 'MiniCPMForCausalLM'),
412+
('minicpm3', 'MiniCPM3ForCausalLM'),
410413
("mobilebert", "MobileBertForMaskedLM"),
411414
("mpnet", "MPNetForMaskedLM"),
412415
("mpt", "MptForCausalLM"),
@@ -493,6 +496,7 @@
493496
("mega", "MegaForCausalLM"),
494497
("megatron-bert", "MegatronBertForCausalLM"),
495498
('minicpm', 'MiniCPMForCausalLM'),
499+
('minicpm3', 'MiniCPM3ForCausalLM'),
496500
("mistral", "MistralForCausalLM"),
497501
("mixtral", "MixtralForCausalLM"),
498502
("mllama", "MllamaForCausalLM"),
@@ -943,6 +947,7 @@
943947
("mega", "MegaForSequenceClassification"),
944948
("megatron-bert", "MegatronBertForSequenceClassification"),
945949
('minicpm', 'MiniCPMForSequenceClassification'),
950+
('minicpm3', 'MiniCPM3ForSequenceClassification'),
946951
("mistral", "MistralForSequenceClassification"),
947952
("mixtral", "MixtralForSequenceClassification"),
948953
("mobilebert", "MobileBertForSequenceClassification"),

mindnlp/transformers/models/auto/tokenization_auto.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -287,6 +287,7 @@
287287
("mega", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
288288
("megatron-bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
289289
("mgp-str", ("MgpstrTokenizer", None)),
290+
("minicpm3", ("MiniCPMTokenizer", None)),
290291
(
291292
"mistral",
292293
(
Lines changed: 26 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,26 @@
1+
# Copyright 2024 Huawei Technologies Co., Ltd
2+
#
3+
# Licensed under the Apache License, Version 2.0 (the "License");
4+
# you may not use this file except in compliance with the License.
5+
# You may obtain a copy of the License at
6+
#
7+
# http://www.apache.org/licenses/LICENSE-2.0
8+
#
9+
# Unless required by applicable law or agreed to in writing, software
10+
# distributed under the License is distributed on an "AS IS" BASIS,
11+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
# See the License for the specific language governing permissions and
13+
# limitations under the License.
14+
# ============================================================================
15+
"""
16+
MiniCPM3 Model.
17+
"""
18+
from . import modeling_minicpm3, configuration_minicpm3, tokenization_minicpm3
19+
from .modeling_minicpm3 import *
20+
from .configuration_minicpm3 import *
21+
from .tokenization_minicpm3 import *
22+
23+
__all__ = []
24+
__all__.extend(modeling_minicpm3.__all__)
25+
__all__.extend(configuration_minicpm3.__all__)
26+
__all__.extend(tokenization_minicpm3.__all__)
Lines changed: 185 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,185 @@
1+
# coding=utf-8
2+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3+
#
4+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5+
# and OPT implementations in this library. It has been modified from its
6+
# original forms to accommodate minor architectural differences compared
7+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8+
#
9+
# Licensed under the Apache License, Version 2.0 (the "License");
10+
# you may not use this file except in compliance with the License.
11+
# You may obtain a copy of the License at
12+
#
13+
# http://www.apache.org/licenses/LICENSE-2.0
14+
#
15+
# Unless required by applicable law or agreed to in writing, software
16+
# distributed under the License is distributed on an "AS IS" BASIS,
17+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18+
# See the License for the specific language governing permissions and
19+
# limitations under the License.
20+
""" MiniCPM model configuration"""
21+
22+
from ...configuration_utils import PretrainedConfig
23+
from mindnlp.utils import logging
24+
25+
26+
logger = logging.get_logger(__name__)
27+
28+
MINICPM3_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
29+
30+
31+
class MiniCPM3Config(PretrainedConfig):
32+
r"""
33+
This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
34+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35+
defaults will yield a similar configuration to that of the MiniCPM-7B.
36+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37+
documentation from [`PretrainedConfig`] for more information.
38+
Args:
39+
vocab_size (`int`, *optional*, defaults to 32000):
40+
Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
41+
`inputs_ids` passed when calling [`MiniCPMModel`]
42+
hidden_size (`int`, *optional*, defaults to 4096):
43+
Dimension of the hidden representations.
44+
intermediate_size (`int`, *optional*, defaults to 11008):
45+
Dimension of the MLP representations.
46+
num_hidden_layers (`int`, *optional*, defaults to 32):
47+
Number of hidden layers in the Transformer decoder.
48+
num_attention_heads (`int`, *optional*, defaults to 32):
49+
Number of attention heads for each attention layer in the Transformer decoder.
50+
num_key_value_heads (`int`, *optional*):
51+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
52+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
53+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
54+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
55+
by meanpooling all the original heads within that group. For more details checkout [this
56+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
57+
`num_attention_heads`.
58+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
59+
The non-linear activation function (function or string) in the decoder.
60+
max_position_embeddings (`int`, *optional*, defaults to 2048):
61+
The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens,
62+
MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
63+
initializer_range (`float`, *optional*, defaults to 0.02):
64+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
65+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
66+
The epsilon used by the rms normalization layers.
67+
use_cache (`bool`, *optional*, defaults to `True`):
68+
Whether or not the model should return the last key/values attentions (not used by all models). Only
69+
relevant if `config.is_decoder=True`.
70+
pad_token_id (`int`, *optional*):
71+
Padding token id.
72+
bos_token_id (`int`, *optional*, defaults to 1):
73+
Beginning of stream token id.
74+
eos_token_id (`int`, *optional*, defaults to 2):
75+
End of stream token id.
76+
pretraining_tp (`int`, *optional*, defaults to 1):
77+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
78+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
79+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
80+
issue](https://github.com/pytorch/pytorch/issues/76232).
81+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
82+
Whether to tie weight embeddings
83+
rope_theta (`float`, *optional*, defaults to 10000.0):
84+
The base period of the RoPE embeddings.
85+
rope_scaling (`Dict`, *optional*):
86+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
87+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
88+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
89+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
90+
these scaling strategies behave:
91+
https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
92+
experimental feature, subject to breaking API changes in future versions.
93+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
94+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
95+
attention_dropout (`float`, *optional*, defaults to 0.0):
96+
The dropout ratio for the attention probabilities.
97+
```python
98+
>>> from transformers import MiniCPMModel, MiniCPMConfig
99+
>>> # Initializing a MiniCPM minicpm-7b style configuration
100+
>>> configuration = MiniCPMConfig()
101+
>>> # Initializing a model from the minicpm-7b style configuration
102+
>>> model = MiniCPMModel(configuration)
103+
>>> # Accessing the model configuration
104+
>>> configuration = model.config
105+
```"""
106+
107+
model_type = "minicpm3"
108+
keys_to_ignore_at_inference = ["past_key_values"]
109+
110+
def __init__(
111+
self,
112+
vocab_size=32000,
113+
hidden_size=4096,
114+
intermediate_size=11008,
115+
num_hidden_layers=32,
116+
num_attention_heads=32,
117+
num_key_value_heads=None,
118+
qk_nope_head_dim=64,
119+
qk_rope_head_dim=32,
120+
q_lora_rank=768,
121+
kv_lora_rank=256,
122+
v_head_dim=None,
123+
head_dim=None,
124+
hidden_act="silu",
125+
max_position_embeddings=2048,
126+
initializer_range=0.02,
127+
rms_norm_eps=1e-6,
128+
use_cache=True,
129+
pad_token_id=None,
130+
bos_token_id=1,
131+
eos_token_id=2,
132+
pretraining_tp=1,
133+
tie_word_embeddings=True,
134+
rope_theta=10000.0,
135+
rope_scaling=None,
136+
attention_bias=False,
137+
attention_dropout=0.0,
138+
scale_emb=1,
139+
dim_model_base=1,
140+
scale_depth=1,
141+
**kwargs,
142+
):
143+
self.vocab_size = vocab_size
144+
self.max_position_embeddings = max_position_embeddings
145+
self.hidden_size = hidden_size
146+
self.intermediate_size = intermediate_size
147+
self.num_hidden_layers = num_hidden_layers
148+
self.num_attention_heads = num_attention_heads
149+
self.qk_nope_head_dim = qk_nope_head_dim
150+
self.qk_rope_head_dim = qk_rope_head_dim
151+
self.q_lora_rank = q_lora_rank
152+
self.kv_lora_rank = kv_lora_rank
153+
154+
if v_head_dim is None:
155+
v_head_dim = qk_nope_head_dim
156+
self.v_head_dim = v_head_dim
157+
158+
# for backward compatibility
159+
if num_key_value_heads is None:
160+
num_key_value_heads = num_attention_heads
161+
162+
self.num_key_value_heads = num_key_value_heads
163+
self.hidden_act = hidden_act
164+
self.initializer_range = initializer_range
165+
self.rms_norm_eps = rms_norm_eps
166+
self.pretraining_tp = pretraining_tp
167+
self.use_cache = use_cache
168+
self.rope_theta = rope_theta
169+
self.rope_scaling = rope_scaling
170+
self.attention_bias = attention_bias
171+
self.attention_dropout = attention_dropout
172+
self.scale_emb = scale_emb
173+
self.dim_model_base = dim_model_base
174+
self.scale_depth = scale_depth
175+
self.head_dim = self.qk_nope_head_dim + self.qk_rope_head_dim
176+
177+
super().__init__(
178+
pad_token_id=pad_token_id,
179+
bos_token_id=bos_token_id,
180+
eos_token_id=eos_token_id,
181+
tie_word_embeddings=tie_word_embeddings,
182+
**kwargs,
183+
)
184+
185+
__all__ = ["MiniCPM3Config"]

0 commit comments

Comments
 (0)