|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "4e2bd86c-ed80-44c0-9b52-7d470c82bf8c", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "## 安装必要的库\n", |
| 9 | + "> 请提前准备好mindspore和mindnlp的安装\n", |
| 10 | + "\n", |
| 11 | + "首先,安装所需的Python库:\n", |
| 12 | + "- `-q` 表述静默安装,不会出现很多的`Requirement already satisfied`等等" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": 1, |
| 18 | + "id": "c64baeda-7159-4436-b8ea-60b5a0a7cfa3", |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [ |
| 21 | + { |
| 22 | + "name": "stdout", |
| 23 | + "output_type": "stream", |
| 24 | + "text": [ |
| 25 | + "\u001b[33mWARNING: You are using pip version 21.0.1; however, version 24.2 is available.\n", |
| 26 | + "You should consider upgrading via the '/home/ma-user/anaconda3/envs/MindSpore/bin/python3.9 -m pip install --upgrade pip' command.\u001b[0m\n" |
| 27 | + ] |
| 28 | + } |
| 29 | + ], |
| 30 | + "source": [ |
| 31 | + "!pip install -q huggingface_hub ipywidgets opencv-python" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "markdown", |
| 36 | + "id": "ca7abaa5-f492-4028-a7b2-d4d0fa0882e1", |
| 37 | + "metadata": {}, |
| 38 | + "source": [ |
| 39 | + "## 设置环境变量\n", |
| 40 | + "设置Hugging Face的国内镜像站点以加快下载速度:" |
| 41 | + ] |
| 42 | + }, |
| 43 | + { |
| 44 | + "cell_type": "code", |
| 45 | + "execution_count": 2, |
| 46 | + "id": "6ea48e86-02ac-4259-813e-b6a26a739f95", |
| 47 | + "metadata": {}, |
| 48 | + "outputs": [], |
| 49 | + "source": [ |
| 50 | + "import os\n", |
| 51 | + "os.environ[\"HF_ENDPOINT\"] = \"https://hf-mirror.com\" " |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "markdown", |
| 56 | + "id": "7bf038e6-af73-4245-9070-6caf552fecfd", |
| 57 | + "metadata": {}, |
| 58 | + "source": [ |
| 59 | + "## 下载加载视频\n", |
| 60 | + "- 使用`huggingface_hub`下载视频文件\n", |
| 61 | + "- 使用`ipywidgets`展示视频" |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "code", |
| 66 | + "execution_count": 3, |
| 67 | + "id": "00c9d670-4aa2-473d-9d3f-334c0a253bb0", |
| 68 | + "metadata": {}, |
| 69 | + "outputs": [ |
| 70 | + { |
| 71 | + "data": { |
| 72 | + "application/vnd.jupyter.widget-view+json": { |
| 73 | + "model_id": "d493073379764beca81e0eebb2229939", |
| 74 | + "version_major": 2, |
| 75 | + "version_minor": 0 |
| 76 | + }, |
| 77 | + "text/plain": [ |
| 78 | + "Video(value=b'\\x00\\x00\\x00 ftypisom\\x00\\x00\\x02\\x00isomiso2avc1mp41\\x00\\x00\\x00\\x08free...', width='500')" |
| 79 | + ] |
| 80 | + }, |
| 81 | + "execution_count": 3, |
| 82 | + "metadata": {}, |
| 83 | + "output_type": "execute_result" |
| 84 | + } |
| 85 | + ], |
| 86 | + "source": [ |
| 87 | + "from huggingface_hub import hf_hub_download\n", |
| 88 | + "from ipywidgets import Video\n", |
| 89 | + "\n", |
| 90 | + "file_path = hf_hub_download(\n", |
| 91 | + " repo_id=\"nielsr/video-demo\", filename=\"eating_spaghetti.mp4\", repo_type=\"dataset\"\n", |
| 92 | + ")\n", |
| 93 | + "Video.from_file(file_path, width=500)" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "markdown", |
| 98 | + "id": "ea2e6ad0-bf9c-41f4-974a-0dd4fc082269", |
| 99 | + "metadata": {}, |
| 100 | + "source": [ |
| 101 | + "## 定义采样函数\n", |
| 102 | + "`sample_frame_indices`通过在给定的帧范围内随机选择一段视频片段,并返回这段片段的帧索引。\n", |
| 103 | + "- `clip_len`: 需要采样的帧数。\n", |
| 104 | + "- `frame_sample_rate`: 帧采样率,决定了采样的密度。\n", |
| 105 | + "- `seg_len`: 视频的总帧数。" |
| 106 | + ] |
| 107 | + }, |
| 108 | + { |
| 109 | + "cell_type": "code", |
| 110 | + "execution_count": 4, |
| 111 | + "id": "be6ef4ac-ed52-461c-a325-3b6c3d01146e", |
| 112 | + "metadata": {}, |
| 113 | + "outputs": [], |
| 114 | + "source": [ |
| 115 | + "import numpy as np\n", |
| 116 | + "\n", |
| 117 | + "np.random.seed(0)\n", |
| 118 | + "\n", |
| 119 | + "def sample_frame_indices(clip_len, frame_sample_rate, seg_len):\n", |
| 120 | + " # 计算转换后的长度(在给定采样率下,实际需要的帧数长度)\n", |
| 121 | + " converted_len = int(clip_len * frame_sample_rate)\n", |
| 122 | + " # 选择结束索引\n", |
| 123 | + " end_idx = np.random.randint(converted_len, seg_len)\n", |
| 124 | + " # 计算开始索引\n", |
| 125 | + " start_idx = end_idx - converted_len\n", |
| 126 | + " #使用np.linspace在开始索引和结束索引之间生成clip_len个等间距的索引\n", |
| 127 | + " indices = np.linspace(start_idx, end_idx, num=clip_len)\n", |
| 128 | + " # 使用np.clip确保所有索引都在有效范围内,并将它们转换为整数类型\n", |
| 129 | + " indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)\n", |
| 130 | + " return indices" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "markdown", |
| 135 | + "id": "d55a7435-b7db-4291-b5fa-d16136e5f120", |
| 136 | + "metadata": {}, |
| 137 | + "source": [ |
| 138 | + "## 读取视频帧\n", |
| 139 | + "利用OpenCV" |
| 140 | + ] |
| 141 | + }, |
| 142 | + { |
| 143 | + "cell_type": "code", |
| 144 | + "execution_count": 5, |
| 145 | + "id": "b045662d-58a9-42e2-9af3-3202c9006089", |
| 146 | + "metadata": {}, |
| 147 | + "outputs": [], |
| 148 | + "source": [ |
| 149 | + "import cv2\n", |
| 150 | + "def read_video(file_path, indices):\n", |
| 151 | + " # 打开视频文件\n", |
| 152 | + " cap = cv2.VideoCapture(file_path)\n", |
| 153 | + " # 初始化一个列表来存储帧\n", |
| 154 | + " frames = []\n", |
| 155 | + " # 遍历给定的帧索引\n", |
| 156 | + " for idx in indices:\n", |
| 157 | + " # 设置视频捕获对象到特定的帧位置\n", |
| 158 | + " cap.set(cv2.CAP_PROP_POS_FRAMES, idx)\n", |
| 159 | + " # 读取该帧\n", |
| 160 | + " ret, frame = cap.read()\n", |
| 161 | + " # 将读取的帧添加到帧列表中,并且转换通道,因为opencv是BGR\n", |
| 162 | + " if ret:\n", |
| 163 | + " frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 转换为RGB\n", |
| 164 | + " frames.append(frame)\n", |
| 165 | + " # 释放视频捕获对象\n", |
| 166 | + " cap.release()\n", |
| 167 | + " # 将帧列表转换为NumPy数组并返回\n", |
| 168 | + " return np.array(frames)\n" |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "markdown", |
| 173 | + "id": "be45a1c6-467e-4861-bd41-a854663b34b6", |
| 174 | + "metadata": {}, |
| 175 | + "source": [ |
| 176 | + "## 采样和读取视频\n", |
| 177 | + "采样8帧并读取:" |
| 178 | + ] |
| 179 | + }, |
| 180 | + { |
| 181 | + "cell_type": "code", |
| 182 | + "execution_count": 6, |
| 183 | + "id": "3bb1023a-7359-4788-9cef-f32fb2feef95", |
| 184 | + "metadata": {}, |
| 185 | + "outputs": [ |
| 186 | + { |
| 187 | + "data": { |
| 188 | + "text/plain": [ |
| 189 | + "(8, 360, 640, 3)" |
| 190 | + ] |
| 191 | + }, |
| 192 | + "execution_count": 6, |
| 193 | + "metadata": {}, |
| 194 | + "output_type": "execute_result" |
| 195 | + } |
| 196 | + ], |
| 197 | + "source": [ |
| 198 | + "cap = cv2.VideoCapture(file_path)\n", |
| 199 | + "seg_len = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))\n", |
| 200 | + "indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=seg_len)\n", |
| 201 | + "video = read_video(file_path, indices)\n", |
| 202 | + "video.shape" |
| 203 | + ] |
| 204 | + }, |
| 205 | + { |
| 206 | + "cell_type": "markdown", |
| 207 | + "id": "3923ae67-85a9-4a92-966c-d25c21ce5949", |
| 208 | + "metadata": {}, |
| 209 | + "source": [ |
| 210 | + "## 使用mindnlp库进行文本-视频匹配\n", |
| 211 | + "\n", |
| 212 | + "本次我们使用的是`X-CLIP`,一个将语言-图像基础模型适配于通用视频识别的新框架。\n", |
| 213 | + "- `X-CLIP`的整体结构与`CLIP`相似,采用两个编码器分别对文本和视频进行编码,然后通过比对这些特征来实现分类。\n", |
| 214 | + "- `X-CLIP`引入了一个轻量级、可“即插即用”的跨帧注意力模块,用于捕捉时间信息。\n", |
| 215 | + "- 此外,该模型使用视频提示(Prompt),可以生成具有区分能力的视觉提示,从而提升分类效果。因此,无需额外数据,`X-CLIP` 有效地利用了预训练的语言-图像模型,通过零样本或少样本学习实现视频识别。\n", |
| 216 | + "\n", |
| 217 | + "论文信息:\n", |
| 218 | + "> [**Expanding Language-Image Pretrained Models for General Video Recognition**](https://arxiv.org/abs/2208.02816)<br>\n", |
| 219 | + "> accepted by ECCV 2022 as an oral presentation<br>\n", |
| 220 | + "> Bolin Ni, [Houwen Peng](https://houwenpeng.com/), [Minghao Chen](https://silent-chen.github.io/), [Songyang Zhang](https://sy-zhang.github.io/), [Gaofeng Meng](https://people.ucas.ac.cn/~gfmeng), [Jianlong Fu](https://jianlong-fu.github.io/), [Shiming Xiang](https://people.ucas.ac.cn/~xiangshiming), [Haibin Ling](https://www3.cs.stonybrook.edu/~hling/)\n", |
| 221 | + "\n", |
| 222 | + "[[arxiv]](https://arxiv.org/abs/2208.02816)\n", |
| 223 | + "[[slides]](https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/xclip-slides.pptx)\n" |
| 224 | + ] |
| 225 | + }, |
| 226 | + { |
| 227 | + "cell_type": "code", |
| 228 | + "execution_count": 7, |
| 229 | + "id": "dfae1baa-0a63-4552-ac36-585896ac1f97", |
| 230 | + "metadata": {}, |
| 231 | + "outputs": [ |
| 232 | + { |
| 233 | + "name": "stderr", |
| 234 | + "output_type": "stream", |
| 235 | + "text": [ |
| 236 | + "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:499: UserWarning: The value of the smallest subnormal for <class 'numpy.float64'> type is zero.\n", |
| 237 | + " setattr(self, word, getattr(machar, word).flat[0])\n", |
| 238 | + "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for <class 'numpy.float64'> type is zero.\n", |
| 239 | + " return self._float_to_str(self.smallest_subnormal)\n", |
| 240 | + "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:499: UserWarning: The value of the smallest subnormal for <class 'numpy.float32'> type is zero.\n", |
| 241 | + " setattr(self, word, getattr(machar, word).flat[0])\n", |
| 242 | + "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/numpy/core/getlimits.py:89: UserWarning: The value of the smallest subnormal for <class 'numpy.float32'> type is zero.\n", |
| 243 | + " return self._float_to_str(self.smallest_subnormal)\n", |
| 244 | + "Building prefix dict from the default dictionary ...\n", |
| 245 | + "Loading model from cache /tmp/jieba.cache\n", |
| 246 | + "Loading model cost 1.286 seconds.\n", |
| 247 | + "Prefix dict has been built successfully.\n", |
| 248 | + "/home/ma-user/anaconda3/envs/MindSpore/lib/python3.9/site-packages/mindnlp/transformers/tokenization_utils_base.py:1526: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted, and will be then set to `False` by default. \n", |
| 249 | + " warnings.warn(\n" |
| 250 | + ] |
| 251 | + }, |
| 252 | + { |
| 253 | + "name": "stdout", |
| 254 | + "output_type": "stream", |
| 255 | + "text": [ |
| 256 | + "[MS_ALLOC_CONF]Runtime config: enable_vmm:True vmm_align_size:2MB\n" |
| 257 | + ] |
| 258 | + }, |
| 259 | + { |
| 260 | + "name": "stderr", |
| 261 | + "output_type": "stream", |
| 262 | + "text": [ |
| 263 | + "[WARNING] CORE(90475,ffff864fc0b0,python):2024-10-24-20:59:31.816.322 [mindspore/core/utils/ms_context.cc:531] GetJitLevel] Set jit level to O2 for rank table startup method.\n" |
| 264 | + ] |
| 265 | + } |
| 266 | + ], |
| 267 | + "source": [ |
| 268 | + "from mindnlp.transformers import XCLIPProcessor, XCLIPModel\n", |
| 269 | + "model_name = \"microsoft/xclip-base-patch32\"\n", |
| 270 | + "processor = XCLIPProcessor.from_pretrained(model_name)\n", |
| 271 | + "model = XCLIPModel.from_pretrained(model_name)" |
| 272 | + ] |
| 273 | + }, |
| 274 | + { |
| 275 | + "cell_type": "markdown", |
| 276 | + "id": "e820ebf1-67d6-4c54-accf-f490358b30e0", |
| 277 | + "metadata": {}, |
| 278 | + "source": [ |
| 279 | + "## 设置提示词和输入" |
| 280 | + ] |
| 281 | + }, |
| 282 | + { |
| 283 | + "cell_type": "code", |
| 284 | + "execution_count": 8, |
| 285 | + "id": "0d0d94f3-94e7-4624-9860-53dece33b536", |
| 286 | + "metadata": {}, |
| 287 | + "outputs": [], |
| 288 | + "source": [ |
| 289 | + "inputs = processor(text=[\"playing sports\", \"eating spaghetti\", \"go shopping\"], videos=list(video), return_tensors=\"ms\")" |
| 290 | + ] |
| 291 | + }, |
| 292 | + { |
| 293 | + "cell_type": "markdown", |
| 294 | + "id": "12e3b2cd-5f64-4dc8-bd50-b0e183322708", |
| 295 | + "metadata": {}, |
| 296 | + "source": [ |
| 297 | + "## 前向计算" |
| 298 | + ] |
| 299 | + }, |
| 300 | + { |
| 301 | + "cell_type": "code", |
| 302 | + "execution_count": 9, |
| 303 | + "id": "8fec4c69-b393-4f7a-9174-da1baf49f8d2", |
| 304 | + "metadata": {}, |
| 305 | + "outputs": [], |
| 306 | + "source": [ |
| 307 | + "outputs = model(**inputs)" |
| 308 | + ] |
| 309 | + }, |
| 310 | + { |
| 311 | + "cell_type": "code", |
| 312 | + "execution_count": 10, |
| 313 | + "id": "c358ec73-672f-412d-ac3a-bf749d52ff8a", |
| 314 | + "metadata": {}, |
| 315 | + "outputs": [ |
| 316 | + { |
| 317 | + "data": { |
| 318 | + "text/plain": [ |
| 319 | + "Tensor(shape=[1, 3], dtype=Float32, value=\n", |
| 320 | + "[[ 1.26835327e+01, 2.11186066e+01, 1.28016310e+01]])" |
| 321 | + ] |
| 322 | + }, |
| 323 | + "execution_count": 10, |
| 324 | + "metadata": {}, |
| 325 | + "output_type": "execute_result" |
| 326 | + } |
| 327 | + ], |
| 328 | + "source": [ |
| 329 | + "logits_per_video = outputs.logits_per_video # 这是视频-文本相似度得分\n", |
| 330 | + "logits_per_video" |
| 331 | + ] |
| 332 | + }, |
| 333 | + { |
| 334 | + "cell_type": "code", |
| 335 | + "execution_count": 11, |
| 336 | + "id": "a1b9e3fa-deac-4004-9961-813e51dd6da0", |
| 337 | + "metadata": {}, |
| 338 | + "outputs": [ |
| 339 | + { |
| 340 | + "data": { |
| 341 | + "text/plain": [ |
| 342 | + "Tensor(shape=[1, 3], dtype=Float32, value=\n", |
| 343 | + "[[ 2.17016917e-04, 9.99538779e-01, 2.44221010e-04]])" |
| 344 | + ] |
| 345 | + }, |
| 346 | + "execution_count": 11, |
| 347 | + "metadata": {}, |
| 348 | + "output_type": "execute_result" |
| 349 | + } |
| 350 | + ], |
| 351 | + "source": [ |
| 352 | + "# 我们可以使用 softmax 来获取标签概率\n", |
| 353 | + "from mindspore import ops\n", |
| 354 | + "ops.softmax(logits_per_video,1)" |
| 355 | + ] |
| 356 | + } |
| 357 | + ], |
| 358 | + "metadata": { |
| 359 | + "kernelspec": { |
| 360 | + "display_name": "MindSpore", |
| 361 | + "language": "python", |
| 362 | + "name": "mindspore" |
| 363 | + }, |
| 364 | + "language_info": { |
| 365 | + "codemirror_mode": { |
| 366 | + "name": "ipython", |
| 367 | + "version": 3 |
| 368 | + }, |
| 369 | + "file_extension": ".py", |
| 370 | + "mimetype": "text/x-python", |
| 371 | + "name": "python", |
| 372 | + "nbconvert_exporter": "python", |
| 373 | + "pygments_lexer": "ipython3", |
| 374 | + "version": "3.9.10" |
| 375 | + } |
| 376 | + }, |
| 377 | + "nbformat": 4, |
| 378 | + "nbformat_minor": 5 |
| 379 | +} |
0 commit comments