cpu-gpu, FLAT, IVF_FLAT, GPU_IVF_FLAT 检索速度几乎没有差别 #41030
-
安装官方文档安装的docker,Milvus-gpu 同样的文本数据,10万条文本,使用bge-m3生成1024维向量写入Milvus,index_type无论是FLAT, IVF_FLAT, GPU_IVF_FLAT,同样query生成的向量去检索,检索速度基本一样,有时200ms,有时400ms,各种方式都试过了,不知道什么原因 #插入数据 删除集合client.drop_collection(collection_name=collection_name) 创建集合schema = MilvusClient.create_schema() index_params.add_index(field_name="dense_vector", index_type="GPU_IVF_FLAT", metric_type="IP", nlist=1024)index_params.add_index(field_name="dense_vector", index_type="IVF_FLAT", metric_type="IP", nlist=1024) 加载模型embedding_model = BGEM3FlagModel('huggingface/bge-m3', use_fp16=False, model = BGEM3FlagModel('/home/huwenqiang/huggingface/bge-m3', use_fp16=False, k = 100 |
Beta Was this translation helpful? Give feedback.
Replies: 1 comment 1 reply
-
"有时200ms,有时400ms" ----------- 因为你设置了consistency_level="Strong"
|
Beta Was this translation helpful? Give feedback.
"有时200ms,有时400ms" ----------- 因为你设置了consistency_level="Strong"
换成Bounded