Skip to content

Not able to convert the model to Torchscript #82

@arunraman

Description

@arunraman

I am trying to convert the DialogGPT model to Torchscript to load the model into Triton. I tried to use JIT to trace the model as mentioned here but hitting the following warning

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
model = AutoModelForCausalLM.from_pretrained(
    "microsoft/DialoGPT-large", torchscript=True)
step = 0
new_user_input_ids = tokenizer.encode(
    "This is a test!" + tokenizer.eos_token, return_tensors='pt')
bot_input_ids = torch.cat(
    [chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
traced_model = torch.jit.trace(
    model, bot_input_ids)
torch.jit.save(traced_model, "DialogGPT.pt")
/opt/conda/lib/python3.8/site-packages/transformers/models/gpt2/modeling_gpt2.py:196: TracerWarning: Converting a tensor to a Python float might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  attn_weights = attn_weights / (float(value.size(-1)) ** 0.5)

How can I trace with the generate method?

model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)

I tried to cover the model ONNX format using this instruction but this takes three inputs
input_ids, attention_mask and token_type_ids. I am able to get input_ids and attention_mask from the tokenizer. How can I get the token_type_ids

inputs = tokenizer("How are you doing?", return_tensors="np")

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions