|
1 | | -import os |
2 | | -import pandas as pd |
3 | | - |
4 | | -folderBase = os.getcwd() |
5 | | -dataFolderName = "cleanData" |
6 | | -dataFolderPath = os.path.join(folderBase,dataFolderName) |
7 | | -outputData_clean = pd.DataFrame(columns=["Participant ID","Participant Group","ListID","Presented Word","Present Position","Recalled Word","Recall Position","Reaction Time","Hit"]) |
8 | | -outputData_intrusion = pd.DataFrame(columns=["Participant ID","Participant Group","ListID","Presented Word","Present Position","Recalled Word","Recall Position","Reaction Time","Hit"]) |
9 | | - |
10 | | -for file in os.listdir(dataFolderPath): |
11 | | - participantId = file.split("-")[0] |
12 | | - participantGroup = file.split("-")[1][:3] |
13 | | - inputData = pd.read_csv(os.path.join(dataFolderPath,file)) |
14 | | - |
15 | | - if "clean" in file: |
16 | | - outputData_clean = pd.concat([inputData, outputData_clean], ignore_index=True) |
17 | | - outputData_clean["Participant ID"].fillna(f"{participantId}",inplace=True) |
18 | | - outputData_clean["Participant Group"].fillna(f"{participantGroup}",inplace=True) |
| 1 | +import os |
| 2 | +import pandas as pd |
| 3 | +import Levenshtein as lv |
| 4 | +import unicodedata |
| 5 | +import numpy as np |
| 6 | +from openpyxl.utils import column_index_from_string as cifs |
| 7 | +import configparser |
| 8 | +import logging |
| 9 | +import time |
| 10 | + |
| 11 | +columnsNumbers = [] |
| 12 | +logger = logging.getLogger(__name__) |
| 13 | +logging.basicConfig( |
| 14 | + filename=f"{time.strftime("%d_%H_%M", time.localtime())}_demo.log", |
| 15 | + encoding="utf-8", |
| 16 | + filemode="a", |
| 17 | + format="{asctime} - {levelname} - {message}", |
| 18 | + style="{", |
| 19 | + datefmt="%Y-%m-%d %H:%M", |
| 20 | + level = 10 |
| 21 | +) |
| 22 | + |
| 23 | +RED = '\033[91m' |
| 24 | +GREEN = '\033[92m' |
| 25 | +BLUE = '\033[94m' |
| 26 | +RESET = '\033[0m' |
| 27 | + |
| 28 | + |
| 29 | +def normalize(text): #normalize to unicode, latin letters |
| 30 | + return ( |
| 31 | + unicodedata.normalize('NFKD', text.upper()) |
| 32 | + .replace('İ', 'I') |
| 33 | + .replace('Ş', 'S') |
| 34 | + .replace('Ğ', 'G') |
| 35 | + .replace('Ü', 'U') |
| 36 | + .replace('Ö', 'O') #İYİLİK - IYILIG |
| 37 | + .replace('Ç', 'C') |
| 38 | + .encode('ASCII', 'ignore') |
| 39 | + .decode('utf-8') |
| 40 | + ) |
| 41 | +def listCSV(lst): |
| 42 | + listOut = [] |
| 43 | + for file in lst: |
| 44 | + if file.endswith(".csv"): |
| 45 | + listOut.append(file) |
| 46 | + else: |
| 47 | + continue |
| 48 | + return listOut |
| 49 | + |
| 50 | +def levenshtein(word, target): |
| 51 | + word = normalize(word) |
| 52 | + target = normalize(target) #Normalize input |
| 53 | + dist = lv.distance(word, target) |
| 54 | + if dist <= numTolerate: |
| 55 | + return True |
| 56 | + |
| 57 | + |
| 58 | +def convertLetterstoNumbers(lst): #For converting the letter inputs into values we can iterate through, |
| 59 | + #and that will match with the indexing of the data |
| 60 | + columnsNumbers.clear() |
| 61 | + for str in lst: |
| 62 | + idX = cifs(str)-1 |
| 63 | + columnsNumbers.append(idX) |
| 64 | + logger.info(f"Columns converted to index numbers. \n Numbers:: {columnsNumbers}") |
| 65 | + |
| 66 | +def dropColumns(x): #for removing the columns we did not want |
| 67 | + tempRemove=[] |
| 68 | + for i in range(len(x.columns)): |
| 69 | + if i not in columnsNumbers: |
| 70 | + tempRemove.append(x.columns[i]) |
| 71 | + else: |
| 72 | + continue |
| 73 | + for i in tempRemove: |
| 74 | + x = x.drop(columns=[f"{i}"]) |
| 75 | + logger.info("Columns Dropped!") |
| 76 | + return x |
| 77 | + |
| 78 | +def columnStrip(df,col,char): |
| 79 | + length = len(df[col]) |
| 80 | + for i in range(length): |
| 81 | + df.loc[i, col] = df.loc[i, col].strip(char) |
| 82 | + return df |
| 83 | + |
| 84 | +def noneFound(): |
| 85 | + pass |
| 86 | + |
| 87 | +def findColumnTypes(df, searchedType): |
| 88 | + temp = [] #returns names of columns with desired ending |
| 89 | + for column in df.columns: |
| 90 | + if column.endswith(searchedType): |
| 91 | + temp.append(column) |
| 92 | + |
| 93 | + if len(temp) <4: #rt are not |
| 94 | + logger.error(f"{temp}, unsatisfactory column count.") |
| 95 | + return temp |
| 96 | + logger.info(f"Columns found for: {searchedType}, \n and are {temp}") |
| 97 | + return temp |
| 98 | + |
| 99 | +def isOneCellMP(cell): #checks if a single cell is one cell multiple response type |
| 100 | + |
| 101 | + if type(cell) == str: |
| 102 | + splitList = cell.split(" ") |
| 103 | + if len(splitList) > 1 and len(splitList[1]) > 1: |
| 104 | + return True |
| 105 | + else: |
| 106 | + return False |
19 | 107 |
|
20 | | - if "intrusion" in file: |
21 | | - outputData_intrusion = pd.concat([inputData, outputData_intrusion], ignore_index=True) |
22 | | - outputData_intrusion["Participant ID"].fillna(f"{participantId}",inplace=True) |
23 | | - outputData_intrusion["Participant Group"].fillna(f"{participantGroup}",inplace=True) |
| 108 | +def arrayCombine(array): #combines the inputs in the array |
| 109 | + rows = [] #to be used for extracting rt values |
| 110 | + combined = [] |
| 111 | + for i in range(len(array)): |
| 112 | + cell = array[i] |
| 113 | + if isOneCellMP(cell) == True: |
| 114 | + dct = cell.split(" ") |
| 115 | + for word in dct: |
| 116 | + combined.append(word) |
| 117 | + rows.append(i) |
| 118 | + #logger.info("Cell Sepeerated") |
24 | 119 |
|
25 | | - outputData_clean.to_csv(os.path.join(dataFolderPath,"CombinedClean.csv"), index=False, encoding="utf-8-sig") |
26 | | - outputData_intrusion.to_csv(os.path.join(dataFolderPath,"CombinedIntrusion.csv"), index=False, encoding="utf-8-sig") |
| 120 | + if isOneCellMP(cell) == False and type(cell) == str: |
| 121 | + combined.append(cell) |
| 122 | + rows.append(i) |
| 123 | + #logger.info(f"Column seperated and combined: {combined, rows} ") |
| 124 | + |
| 125 | + return combined, rows |
| 126 | +# def indexOneCellMultipleResponse(array): |
| 127 | +# tmp = array |
| 128 | +# output = [] |
| 129 | +# for i in range(len(tmp)): |
| 130 | +# cell = tmp[i] |
| 131 | +# if isOneCellMP(cell) == True: |
| 132 | +# output.append(i) |
| 133 | +# else: continue |
27 | 134 |
|
| 135 | +# return output |
| 136 | + |
| 137 | +# def OneCellDeconstruct(array): |
| 138 | +# newArray = [] |
| 139 | +# for cellnum in indexOneCellMultipleResponse(array): |
| 140 | +# cellSplit = array[cellnum].split(" ") |
| 141 | +# for word in cellSplit: |
| 142 | +# newArray.append(word) |
| 143 | +# return newArray |
| 144 | + |
| 145 | +def createRecallRtimeTable(): |
| 146 | + RecallRtimeTable = pd.DataFrame(columns=["ListID","Recalled Word","Recall Position","Reaction Time","RT Viable"]) |
| 147 | + return RecallRtimeTable |
| 148 | + |
| 149 | +def fillRecallRtimeTable(df,table,RecallEnd,ReactionEnd): |
| 150 | + temp = table |
| 151 | + recallColumnNames = findColumnTypes(df, RecallEnd) |
| 152 | + pushtoRow = 0 #which row to push to |
| 153 | + for ncol in range(len(recallColumnNames)): #iterate through the recall cols list |
| 154 | + recallCol = recallColumnNames[ncol] #get the name, ncol is used to have the listID |
| 155 | + array = df[recallCol] #set the array |
| 156 | + recallWords, rows = arrayCombine(array) #get combined array. with row ids to use in getting reaction times. |
| 157 | + for i in range(len(recallWords)): |
| 158 | + temp.loc[pushtoRow, "ListID"] = ncol |
| 159 | + temp.loc[pushtoRow, "Recalled Word"] = recallWords[i] |
| 160 | + temp.loc[pushtoRow, "Recall Position"] = i+1 |
| 161 | + temp.loc[pushtoRow, "Reaction Time"] = rows[i] |
| 162 | + logger.info(f"To {pushtoRow}:: {ncol,recallWords[i],i+1,rows[i]} pushed.") |
| 163 | + pushtoRow += 1 |
| 164 | + |
| 165 | + |
| 166 | + |
| 167 | + reactionColumnNames = findColumnTypes(df, ReactionEnd) #take the columns with endind |
| 168 | + #gives an error when none found, we must take it in mind and create some instance for it. |
| 169 | + |
| 170 | + for i in range(len(temp["Recalled Word"])): |
| 171 | + gettable = temp["ListID"][i] #for the given row, take the table id |
| 172 | + getindex = temp["Reaction Time"][i] #for the given row, take the row number from reaction time column. where the previous function wrote. |
| 173 | + ##ERROR |
| 174 | + #HANDLE FOR NO REACTION COLUMNS |
| 175 | + if len(reactionColumnNames) <5: |
| 176 | + reactionCol = [0 for _ in range(500)] #create this so we cann fill and dont have error. |
| 177 | + else: |
| 178 | + reactionCol = df[reactionColumnNames[gettable]] #take the relevant reaction time column |
| 179 | + temp.loc[i,"Reaction Time"] = reactionCol[getindex] #take the value |
| 180 | + |
| 181 | + temp = columnStrip(temp, "Recalled Word", "\n") |
| 182 | + |
| 183 | + return temp |
| 184 | + |
| 185 | +def whichRowstoLists(df, columnName: str, listNum: int): |
| 186 | + """ |
| 187 | + Returns the row indexes where a list starts and ends. |
| 188 | + [start, end, start, end...] |
| 189 | +
|
| 190 | + Args: |
| 191 | + columnName: string type name, where the function will work |
| 192 | + listNum: Number of lists to look for, there is an overflow problem of one extra list. Used for that. Exclude trial list if you have one on this count. |
| 193 | + |
| 194 | + """ |
| 195 | + currentListCount = 0 |
| 196 | + rowNumbersList = [] |
| 197 | + length = len(df[columnName]) |
| 198 | + array = df[columnName] |
| 199 | + |
| 200 | + for i in range(length-1): |
| 201 | + Left = array[i] |
| 202 | + Right = array[i+1] |
| 203 | + if pd.isna(Left) == True and pd.isna(Right) == False: |
| 204 | + if currentListCount <= listNum: |
| 205 | + rowNumbersList.append(i+1) |
| 206 | + else: |
| 207 | + continue |
| 208 | + if pd.isna(Left) == False and pd.isna(Right) == True: |
| 209 | + if currentListCount <= listNum: |
| 210 | + rowNumbersList.append(i) |
| 211 | + currentListCount += 1 |
| 212 | + else: |
| 213 | + continue |
| 214 | + return rowNumbersList |
| 215 | + |
| 216 | +def createWordPresentTable(): |
| 217 | + return pd.DataFrame(columns=["ListID","Words Presented","Present Position"]) |
| 218 | + |
| 219 | +def fillWordPresentTable(df, columnName:str, listNum: int, table): |
| 220 | + |
| 221 | + rowNums = whichRowstoLists(df, columnName, listNum) |
| 222 | + array = df[columnName] |
| 223 | + |
| 224 | + currentListIndexer = 0 #to generate indexes from rowNums lit |
| 225 | + currentListIdentifier = 0 #to write at column |
| 226 | + builderRowNum = 0 #for using at .loc |
| 227 | + |
| 228 | + for x in range(listNum+1): |
| 229 | + stratRowNum = int(rowNums[currentListIndexer]) |
| 230 | + endRowNum = int(rowNums[currentListIndexer+1]) |
| 231 | + |
| 232 | + for i in range(stratRowNum,endRowNum+1): |
| 233 | + table.loc[builderRowNum, "ListID"] = currentListIdentifier |
| 234 | + table.loc[builderRowNum, "Words Presented"] = array[i] |
| 235 | + table.loc[builderRowNum, "Present Position"] = (i - stratRowNum) + 1 |
| 236 | + builderRowNum += 1 |
| 237 | + |
| 238 | + currentListIndexer += 2 |
| 239 | + currentListIdentifier += 1 |
| 240 | + return table |
| 241 | + |
| 242 | +def mergeTables(wordPresent, recall): |
| 243 | + newTable = pd.DataFrame(columns=["ListID","Presented Word","Present Position","Recalled Word","Recall Position","Reaction Time","Hit"]) |
| 244 | + # remainderRecall = recall |
| 245 | + currentRow = 0 |
| 246 | + wordsCol = wordPresent["Words Presented"] |
| 247 | + recallCol = recall["Recalled Word"] |
| 248 | + |
| 249 | + for i in range(len(wordsCol)): |
| 250 | + presented = normalize(str(wordsCol[i])) |
| 251 | + presentedListRelation = wordPresent["ListID"][i] |
| 252 | + |
| 253 | + newTable.loc[currentRow, "ListID"] = wordPresent["ListID"][i] |
| 254 | + newTable.loc[currentRow, "Presented Word"] = wordPresent["Words Presented"][i] |
| 255 | + newTable.loc[currentRow, "Present Position"] = wordPresent["Present Position"][i] |
28 | 256 |
|
| 257 | + found = False |
| 258 | + |
| 259 | + toDrop = [] |
| 260 | + |
| 261 | + for x in range(len(recallCol)): |
| 262 | + recalled = normalize(str(recallCol[x])) |
| 263 | + recallListRelation = recall["ListID"][x] |
| 264 | + |
| 265 | + if recalled == presented and recallListRelation == presentedListRelation and found == False: |
| 266 | + newTable.loc[currentRow, "Recalled Word"] = recall["Recalled Word"][x] |
| 267 | + newTable.loc[currentRow, "Recall Position"] = recall["Recall Position"][x] |
| 268 | + newTable.loc[currentRow, "Reaction Time"] = recall["Reaction Time"][x] |
| 269 | + newTable.loc[currentRow, "Hit"] = 1 # true hit |
| 270 | + toDrop.append(x) |
| 271 | + # try: |
| 272 | + # remainderRecall = remainderRecall.drop(index = toDrop).reset_index(drop=True) #to take in remaining values |
| 273 | + # except Exception as e: |
| 274 | + # logger.error(f"While on File: {file}, \n and on function merge \n index = x and array = {remainderRecall}\n faced with Exception: {e}") |
| 275 | + |
| 276 | + currentRow += 1 |
| 277 | + found = True |
| 278 | + |
| 279 | + |
| 280 | + if recalled == presented and recallListRelation != presentedListRelation and found == False: |
| 281 | + newTable.loc[currentRow, "Recalled Word"] = recall["Recalled Word"][x] |
| 282 | + newTable.loc[currentRow, "Recall Position"] = recall["Recall Position"][x] |
| 283 | + newTable.loc[currentRow, "Reaction Time"] = recall["Reaction Time"][x] |
| 284 | + newTable.loc[currentRow, "Hit"] = 2 #list intrusion |
| 285 | + # remainderRecall = remainderRecall.drop(index = x) #to take in remaining values |
| 286 | + currentRow += 1 |
| 287 | + found = True |
| 288 | + |
| 289 | + if found == False: |
| 290 | + newTable.loc[currentRow, "Hit"] = 0 #list intrusion |
| 291 | + currentRow += 1 |
| 292 | + |
| 293 | + return newTable |
| 294 | + |
| 295 | +###Define folders |
| 296 | +folderBase = os.getcwd() #/../psychopy-recall-suffix |
| 297 | +folderDataRaw = os.path.join(folderBase, "data") |
| 298 | +folderRawCSV = listCSV(os.listdir(folderDataRaw)) |
| 299 | + |
| 300 | +#have config |
| 301 | +pathConfig = os.path.join(folderBase,"config.ini") |
| 302 | +config = configparser.ConfigParser() |
| 303 | +config.read(pathConfig) |
| 304 | + |
| 305 | +numTolerate = int(config["DEFAULT"]["numTolerate"]) |
| 306 | +numLists = int(config["DEFAULT"]["numLists"]) # Need to match key name |
| 307 | +columnsExtract = config["DEFAULT"].get("columnsExtract").replace(" ", "").split(",") |
| 308 | +trialyes = int(config["DEFAULT"]["trialyes"]) |
| 309 | + |
| 310 | +if "cleanData" not in os.listdir(folderBase): #create the cleanData folder |
| 311 | + os.mkdir("cleanData") |
| 312 | + |
| 313 | +folderDataClean = os.path.join(folderBase, "cleanData") |
| 314 | + |
| 315 | +for file in folderRawCSV: #start the loop, it starts if a data is not already cleaned |
| 316 | + |
| 317 | + fileCleaned = file.replace(".csv","") + "_clean.csv" |
| 318 | + fileRemainder = file.replace(".csv","") + "_intrusions.csv" |
| 319 | + filePath = os.path.join(folderDataRaw, file) |
| 320 | + |
| 321 | + if fileCleaned not in os.listdir(folderDataClean): |
| 322 | + #left here, continue from |
| 323 | + try: |
| 324 | + dataInput = pd.read_csv(filePath) #take file |
| 325 | + |
| 326 | + convertLetterstoNumbers(columnsExtract) #Now we can turn it to numbers. |
| 327 | + #the number array is returned to a global list created at the start. |
| 328 | + #that number array is fed into dropColumns |
| 329 | + dataInput = dropColumns(dataInput) |
| 330 | + |
| 331 | + recallTable = fillRecallRtimeTable(dataInput, createRecallRtimeTable(),".text",".rt") |
| 332 | + wordsTable = fillWordPresentTable(dataInput, "Words", 4, createWordPresentTable()) |
| 333 | + |
| 334 | + table = mergeTables(wordsTable,recallTable) |
| 335 | + |
| 336 | + #save the files |
| 337 | + |
| 338 | + output_path = os.path.join(folderDataClean,fileCleaned) |
| 339 | + |
| 340 | + table.to_csv(output_path, index=False, encoding="utf-8-sig") |
| 341 | + # remainder.to_csv(os.path.join(folderDataClean,fileRemainder)) |
| 342 | + |
| 343 | + print(f"{GREEN}File created!{fileCleaned}{RESET}") |
| 344 | + except Exception as e: |
| 345 | + print(f"{RED}Faulty file: {file}, passed.{RESET}") |
| 346 | + logger.error(f"RAISED EXCEPTION. {e} for file: {file}") |
| 347 | + continue |
| 348 | + |
| 349 | + |
| 350 | + if fileCleaned in os.listdir(folderDataClean): |
| 351 | + print(f"{BLUE}File with name: {fileCleaned}, already exists in cleanData as {file}_clean.csv{RESET}") |
| 352 | + |
| 353 | + continue |
| 354 | + |
0 commit comments