-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgarage-keys.ino
210 lines (174 loc) · 6.42 KB
/
garage-keys.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#include <stdint.h>
#include <avr/io.h>
#include <util/delay.h>
//0 is P0, 1 is P1, 2 is P2, etc. - unlike the analog inputs, for digital outputs the pin number matches.
#define FS1000A_DATA_PIN 2
void setup() {
pinMode(FS1000A_DATA_PIN, OUTPUT);
}
// sending sequence of pulses that is described by single hexadecimal digit
void sendhexdigit(char c , uint16_t pulse)
{
switch (c) {
// hex = 0, send 4 low pulses
case '0':
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 4);
break;
// hex = 1, send 3 low pulses and 1 high pulse
case '1':
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 3);
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, LOW);
break;
// hex = 2, send 2 low pulses, 1 high pulse, 1 low pulse
case '2':
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 2);
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 1);
break;
// hex = 3, send 2 low pulses, 2 high pulses
case '3':
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 2);
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 2);
digitalWrite(FS1000A_DATA_PIN, LOW);
break;
// hex = 4, send 1 low pulses, 1 high pulse, 2 low pulse
case '4':
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 2);
break;
// hex = 5, send 1 low pulses, 1 high pulse, 2 low pulse
case '5':
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, LOW);
break;
// hex = 6, send 1 low pulses, 2 high pulse, 1 low pulse
case '6':
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 2);
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 1);
break;
// hex = 7, send 1 low pulse, 3 high pulse
case '7':
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 3);
digitalWrite(FS1000A_DATA_PIN, LOW);
break;
// hex = 8, send 1 high pulse, 3 low pulses
case '8':
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 3);
break;
// hex = 9, send 1 high pulse, 2 low pulses, 1 high pulse
case '9':
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 2);
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, LOW);
break;
// hex = a, send 1 high pulse, 1 low pulses, 1 high pulse, 1 low pulse
case 'a':
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 1);
break;
// hex = b, send 1 high pulse, 1 low pulses, 2 high pulses
case 'b':
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 2);
digitalWrite(FS1000A_DATA_PIN, LOW);
break;
// hex = c, send 2 high pulse, 2 low pulses
case 'c':
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 2);
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 2);
break;
// hex = d, send 2 high pulse, 1 low pulses, 1 high pulses
case 'd':
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 2);
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 1);
digitalWrite(FS1000A_DATA_PIN, LOW);
break;
// hex = e, send 3 high pulses, 1 low pulses
case 'e':
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 3);
digitalWrite(FS1000A_DATA_PIN, LOW);
delayMicroseconds(pulse * 1);
break;
// hex = f, send 4 high pulses
case 'f':
digitalWrite(FS1000A_DATA_PIN, HIGH);
delayMicroseconds(pulse * 4);
digitalWrite(FS1000A_DATA_PIN, LOW);
break;
default:
digitalWrite(FS1000A_DATA_PIN, LOW);
break;
}; // end of switch selection
} // endo of sendhexdigit function
void loop() {
// now the decoded pulse definition taken from Universal Radio Hacker tool and your keys
char sequence1[] = "XXXXXXX";
char sequence2[] = "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX";
uint16_t pulse = 371; // pulse width is 372 microseconds in my case
uint8_t i;
// first sequence
for (i = 0; i<sizeof(sequence1); i++)
{
sendhexdigit(sequence1[i], pulse);
}
// first pause
delayMicroseconds(3723);
//second sequence
for (i = 0; i<sizeof(sequence2); i++)
{
sendhexdigit(sequence2[i], pulse);
}
// second pause
delayMicroseconds(15230);
} // endo of main loop