-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_e3.py
128 lines (110 loc) · 5.76 KB
/
train_e3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os, pdb, time, torch, random, numpy, scipy, datetime, math
import sys, logging, traceback, argparse, copy
import torch.optim as optim
import torch.nn as nn
import matplotlib.pyplot as plt
import environment, agents, plotting, models, utils, importlib, arguments
from utils import Tensorboard
def main():
config, experiment_name = arguments.get_args()
# Set seed
random.seed(config.seed)
numpy.random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
experiment = f'{config.results_dir}/{experiment_name}/'
print("EXPERIMENT NAME: ", experiment_name)
# Create the experiment folder and logger
if not os.path.exists(experiment):
os.makedirs(experiment)
logger = utils.SimpleLogger(f'{experiment}/log.txt')
# Copy source code
srcpath = experiment + '/src/'
if not os.path.exists(srcpath):
os.makedirs(srcpath)
os.system(f'cp *.py {srcpath}')
# Define log settings
log_path = experiment + '/train_baseline.log'
# Create agent and environment
env = environment.EnvironmentWrapper(config)
agent = agents.Agent(config)
if config.cuda == 1: agent = agent.cuda()
optimizer = optim.Adam(agent.parameters(), lr=config.learning_rate)
agent.dqn = models.DQN(config).cuda()
optimizer_dqn = optim.Adam(agent.dqn.parameters(), lr=config.dqn_learning_rate)
agent.best_dqn_params = agent.dqn.state_dict()
keep_training_dqn = True
print(f'# parameters: {utils.count_parameters(agent)}')
# Load checkpoint if one exists
if os.path.isfile(experiment + '/agent.pth'):
print(f'[loading checkpoint from {experiment}]')
checkpoint = torch.load(experiment + '/agent.pth')
agent.load_state_dict(checkpoint['agent'].state_dict())
optimizer.load_state_dict(checkpoint['optimizer'].state_dict())
agent.replay_memory = checkpoint['agent'].replay_memory
epoch = checkpoint['ep'] + 1
perf = torch.load(experiment + '/perf.pth')
print(f'[resuming at epoch {epoch}]')
else:
epoch = 0
perf = {'losses': [], 'metrics': [], 'rewards': []}
tensorboard = Tensorboard(config.results_dir + f'/tensorboard/{experiment_name}', log_dir=config.results_dir + '/tensorboard_logs/')
best_exploit_perf = -math.inf
dqn_epochs_completed = 0
# Start algorithm
phase = 'explore'
while epoch < 200:
if epoch < config.n_exploration_epochs:
#### Explore phase
phase = 'explore'
agent.eval()
exploration_policy = 'random' if epoch == 0 else config.exploration_policy
ep_reward, ep_length = agent.act(env, 'train', config, policy = exploration_policy, goal='explore')
logger.log(f'EXPLORE PHASE | mean reward: {ep_reward}, mean episode length: {ep_length}')
if config.test == 1:
agent.act(env, 'test', config, policy = exploration_policy, goal='explore')
# train the models
for i in range(config.n_training_epochs):
if (i < config.n_training_epochs - 1):
split = 'train'; agent.train()
else:
split = 'test'; agent.eval()
losses, log_string = agent.train_model(split, 'explore', optimizer, config, tensorboard, update=(split=='train'))
logger.log(f'TRAINING MODEL | ep {epoch}/{i} | {log_string}')
else:
#### Exploit phase
if 'maze' in config.env:
# just do search
ep_reward, ep_length = agent.act(env, 'train', config, policy = 'particle2', goal='exploit', n_episodes = config.n_trajectories)
logger.log(f'EXPLOIT PHASE: epoch {epoch}, mean reward: {ep_reward}, mean episode length: {ep_length}')
else:
if phase == 'explore':
# this is our first time exploiting - train the DQN for a while
phase = 'exploit'
agent.train_policy_dqn('train', 'explore', optimizer_dqn, config, n_updates=config.dqn_model_updates, logger=logger)
agent.best_dqn_params = copy.deepcopy(agent.dqn.state_dict())
keep_training_dqn = True
else:
# act in the environment
if keep_training_dqn:
agent.train_policy_dqn('train', 'explore', optimizer_dqn, config, n_updates=25000, logger=logger)
ep_reward, ep_length = agent.act(env, 'test', config, policy='dqn', n_episodes=config.dqn_eval_ep)
logger.log(f'EXPLOIT PHASE: epoch {epoch}, mean reward: {ep_reward}, mean episode length: {ep_length}, DQN training: {keep_training_dqn}')
if keep_training_dqn:
if ep_reward >= best_exploit_perf or config.checkpoint_dqn == 0:
best_exploit_perf = ep_reward
agent.best_dqn_params = copy.deepcopy(agent.dqn.state_dict()) # TODO clone!!!!
else:
agent.dqn.load_state_dict(agent.best_dqn_params)
keep_training_dqn = False
perf['epoch'] = epoch
perf['rewards'].append(ep_reward)
torch.save(perf, f'{experiment}/perf.pth')
torch.save({'agent': agent, 'optimizer': optimizer, 'ep': epoch}, f'{experiment}/agent.epoch{epoch}.pth')
torch.save({'agent': agent, 'optimizer': optimizer, 'ep': epoch}, f'{experiment}/agent.pth')
torch.save(agent.replay_memory, f'{experiment}/replay_memory.pth')
epoch += 1
if __name__ == "__main__":
main()