-
-
Notifications
You must be signed in to change notification settings - Fork 318
Open
Description
The error occurred before model evaluation:
Epoch 1/2
422/422 - 3s - loss: 1.7380 - accuracy: 0.4183 - val_loss: 0.8082 - val_accuracy: 0.8570
Epoch 2/2
422/422 - 2s - loss: 0.9614 - accuracy: 0.6891 - val_loss: 0.4583 - val_accuracy: 0.8960
0%| | 0/5 [00:05<?, ?trial/s, best loss=?]
job exception: 'val_acc'
0%| | 0/5 [00:05<?, ?trial/s, best loss=?]
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-2-cf1d0fa8fe34> in <module>()
82 max_evals=5,
83 trials=Trials(),
---> 84 notebook_name='Deep learning GridSearch')
85 X_train, Y_train, X_test, Y_test = data()
86 print("Evalutation of best performing model:")
~/anaconda3/lib/python3.6/site-packages/hyperas/optim.py in minimize(model, data, algo, max_evals, trials, functions, rseed, notebook_name, verbose, eval_space, return_space, keep_temp)
67 notebook_name=notebook_name,
68 verbose=verbose,
---> 69 keep_temp=keep_temp)
70
71 best_model = None
~/anaconda3/lib/python3.6/site-packages/hyperas/optim.py in base_minimizer(model, data, functions, algo, max_evals, trials, rseed, full_model_string, notebook_name, verbose, stack, keep_temp)
137 trials=trials,
138 rstate=np.random.RandomState(rseed),
--> 139 return_argmin=True),
140 get_space()
141 )
~/anaconda3/lib/python3.6/site-packages/hyperopt/fmin.py in fmin(fn, space, algo, max_evals, timeout, loss_threshold, trials, rstate, allow_trials_fmin, pass_expr_memo_ctrl, catch_eval_exceptions, verbose, return_argmin, points_to_evaluate, max_queue_len, show_progressbar, early_stop_fn, trials_save_file)
520 show_progressbar=show_progressbar,
521 early_stop_fn=early_stop_fn,
--> 522 trials_save_file=trials_save_file,
523 )
524
~/anaconda3/lib/python3.6/site-packages/hyperopt/base.py in fmin(self, fn, space, algo, max_evals, timeout, loss_threshold, max_queue_len, rstate, verbose, pass_expr_memo_ctrl, catch_eval_exceptions, return_argmin, show_progressbar, early_stop_fn, trials_save_file)
697 show_progressbar=show_progressbar,
698 early_stop_fn=early_stop_fn,
--> 699 trials_save_file=trials_save_file,
700 )
701
~/anaconda3/lib/python3.6/site-packages/hyperopt/fmin.py in fmin(fn, space, algo, max_evals, timeout, loss_threshold, trials, rstate, allow_trials_fmin, pass_expr_memo_ctrl, catch_eval_exceptions, verbose, return_argmin, points_to_evaluate, max_queue_len, show_progressbar, early_stop_fn, trials_save_file)
551
552 # next line is where the fmin is actually executed
--> 553 rval.exhaust()
554
555 if return_argmin:
~/anaconda3/lib/python3.6/site-packages/hyperopt/fmin.py in exhaust(self)
354 def exhaust(self):
355 n_done = len(self.trials)
--> 356 self.run(self.max_evals - n_done, block_until_done=self.asynchronous)
357 self.trials.refresh()
358 return self
~/anaconda3/lib/python3.6/site-packages/hyperopt/fmin.py in run(self, N, block_until_done)
290 else:
291 # -- loop over trials and do the jobs directly
--> 292 self.serial_evaluate()
293
294 self.trials.refresh()
~/anaconda3/lib/python3.6/site-packages/hyperopt/fmin.py in serial_evaluate(self, N)
168 ctrl = base.Ctrl(self.trials, current_trial=trial)
169 try:
--> 170 result = self.domain.evaluate(spec, ctrl)
171 except Exception as e:
172 logger.error("job exception: %s" % str(e))
~/anaconda3/lib/python3.6/site-packages/hyperopt/base.py in evaluate(self, config, ctrl, attach_attachments)
905 print_node_on_error=self.rec_eval_print_node_on_error,
906 )
--> 907 rval = self.fn(pyll_rval)
908
909 if isinstance(rval, (float, int, np.number)):
~/Desktop/honours thesis/thesis/thesis proposal/NLP tutorial/temp_model.py in keras_fmin_fnct(space)
KeyError: 'val_acc'
My code is exactly the 'complete example', except added 'notebook_name' in optim.minimize. Thanks in advance.
Metadata
Metadata
Assignees
Labels
No labels