|
1 |
| -pycam02ucs |
2 |
| -========== |
| 1 | +viscm |
| 2 | +===== |
3 | 3 |
|
4 |
| -.. image:: https://travis-ci.org/njsmith/pycam02ucs.png?branch=master |
5 |
| - :target: https://travis-ci.org/njsmith/pycam02ucs |
6 |
| -.. image:: https://coveralls.io/repos/njsmith/pycam02ucs/badge.png?branch=master |
7 |
| - :target: https://coveralls.io/r/njsmith/pycam02ucs?branch=master |
| 4 | +This is a little tool for analyzing colormaps and creating new colormaps. |
8 | 5 |
|
9 |
| -This is an powerful, accurate, and easy-to-use library for performing |
10 |
| -colorspace conversions. |
| 6 | +Try:: |
11 | 7 |
|
12 |
| -In addition to the most common standard colorspaces (sRGB, XYZ, xyY, |
13 |
| -CIELab, CIELCh), we also include: color vision deficiency ("color |
14 |
| -blindness") simulations using the approach of Machado et al (2009); a |
15 |
| -complete implementation of `CIECAM02 |
16 |
| -<https://en.wikipedia.org/wiki/CIECAM02>`_; and the perceptually |
17 |
| -uniform CAM02-UCS / CAM02-LCD / CAM02-SCD spaces proposed by Luo et al |
18 |
| -(2006). |
19 |
| - |
20 |
| -To use it, simply write:: |
21 |
| - |
22 |
| - from pycam02ucs import cspace_convert |
23 |
| - |
24 |
| - Jp, ap, bp = cspace_convert([64, 128, 255], "sRGB255", "CAM02-UCS") |
25 |
| - |
26 |
| -This converts an sRGB value (represented as integers between 0-255) to |
27 |
| -CAM02-UCS J'a'b' coordinates (by default, assuming standard sRGB |
28 |
| -viewing conditions). This requires passing through 4 intermediate |
29 |
| -colorspaces; ``cspace_convert`` automatically finds the optimal route |
30 |
| -and applies all conversions in sequence: |
31 |
| - |
32 |
| -This function also of course accepts arbitrary NumPy arrays, so |
33 |
| -converting a whole image is just as easy as converting a single value. |
34 |
| - |
35 |
| -Documentation: |
36 |
| - TODO |
37 |
| - |
38 |
| -Installation: |
39 |
| - ``pip install .`` |
| 8 | + $ pip install viscm |
| 9 | + $ python -m viscm show jet |
| 10 | + $ python -m viscm edit |
40 | 11 |
|
41 | 12 | Downloads:
|
42 |
| - TODO |
| 13 | + https://pypi.python.org/pypi/viscm/ |
43 | 14 |
|
44 | 15 | Code and bug tracker:
|
45 |
| - https://github.com/njsmith/pycam02ucs |
| 16 | + https://github.com/bids/viscm |
46 | 17 |
|
47 | 18 | Contact:
|
48 |
| - Nathaniel J. Smith <njs@pobox.com> |
| 19 | + Nathaniel J. Smith <njs@pobox.com> and Stefan van der Walt <stefanv@berkeley.edu> |
49 | 20 |
|
50 | 21 | Dependencies:
|
51 | 22 | * Python 2.6+, or 3.3+
|
| 23 | + * `colorspacious <https://pypi.python.org/pypi/colorspacious>`_ |
| 24 | + * Matplotlib |
52 | 25 | * NumPy
|
53 | 26 |
|
54 |
| -Developer dependencies (only needed for hacking on source): |
55 |
| - * nose: needed to run tests |
56 |
| - |
57 | 27 | License:
|
58 | 28 | MIT, see LICENSE.txt for details.
|
59 |
| - |
60 |
| -References: |
61 |
| - |
62 |
| - Luo, M. R., Cui, G., & Li, C. (2006). Uniform colour spaces based on |
63 |
| - CIECAM02 colour appearance model. Color Research & Application, 31(4), |
64 |
| - 320–330. doi:10.1002/col.20227 |
65 |
| - |
66 |
| - Machado, G. M., Oliveira, M. M., & Fernandes, L. A. (2009). A |
67 |
| - physiologically-based model for simulation of color vision |
68 |
| - deficiency. Visualization and Computer Graphics, IEEE Transactions on, |
69 |
| - 15(6), 1291–1298. http://www.inf.ufrgs.br/~oliveira/pubs_files/CVD_Simulation/CVD_Simulation.html |
70 |
| - |
71 |
| -Other Python packages with similar functionality that you might also |
72 |
| -want to check out: |
73 |
| - |
74 |
| -* ``colour``: http://colour-science.org/ |
75 |
| -* ``colormath``: http://python-colormath.readthedocs.org/ |
76 |
| -* ``ciecam02``: https://pypi.python.org/pypi/ciecam02/ |
77 |
| -* ``ColorPy``: http://markkness.net/colorpy/ColorPy.html |
0 commit comments