@@ -114,20 +114,6 @@ def probplot(data, ax=None, plottype='prob', dist=None, probax='x',
114
114
... line_kws=dict(linestyle='-', linewidth=2),
115
115
... scatter_kws=dict(marker='s', alpha=0.5))
116
116
117
-
118
-
119
- Quantile plot with a custom distribution
120
-
121
- .. plot::
122
- :context: close-figs
123
-
124
- >>> norm = stats.norm(5, 1.25)
125
- >>> fig = probplot(data, ax=ax, plottype='qq', dist=norm,
126
- ... probax='x', problabel='Theoretical Quantiles',
127
- ... datalabel='Observed values', bestfit=True,
128
- ... line_kws=dict(linestyle=':', linewidth=2),
129
- ... scatter_kws=dict(marker='^', alpha=0.5))
130
-
131
117
"""
132
118
133
119
if dist is None :
@@ -237,32 +223,32 @@ def plot_pos(data, postype=None, alpha=None, beta=None):
237
223
values can also be access via the ``postype`` parameter. Available
238
224
``postype`` values (alpha, beta) are:
239
225
240
- "type 4" (alpha=0, beta=1)
226
+ "type 4" (alpha=0, beta=1)
241
227
Linear interpolation of the empirical CDF.
242
- "type 5" or "hazen" (alpha=0.5, beta=0.5)
228
+ "type 5" or "hazen" (alpha=0.5, beta=0.5)
243
229
Piecewise linear interpolation.
244
- "type 6" or "weibull" (alpha=0, beta=0)
230
+ "type 6" or "weibull" (alpha=0, beta=0)
245
231
Weibull plotting positions. Unbiased exceedance probability
246
232
for all distributions. Recommended for hydrologic
247
233
applications.
248
- "type 7" (alpha=1, beta=1)
234
+ "type 7" (alpha=1, beta=1)
249
235
The default values in R. Not recommended with probability
250
236
scales as the min and max data points get plotting positions
251
237
of 0 and 1, respectively, and therefore cannot be shown.
252
- "type 8" (alpha=1/3, beta=1/3)
238
+ "type 8" (alpha=1/3, beta=1/3)
253
239
Approximately median-unbiased.
254
- "type 9" or "blom" (alpha=0.375, beta=0.375)
240
+ "type 9" or "blom" (alpha=0.375, beta=0.375)
255
241
Approximately unbiased positions if the data are normally
256
242
distributed.
257
- "median" (alpha=0.3175, beta=0.3175)
243
+ "median" (alpha=0.3175, beta=0.3175)
258
244
Median exceedance probabilities for all distributions
259
245
(used in ``scipy.stats.probplot``).
260
- "apl" or "pwm" (alpha=0.35, beta=0.35)
246
+ "apl" or "pwm" (alpha=0.35, beta=0.35)
261
247
Used with probability-weighted moments.
262
- "cunnane" (alpha=0.4, beta=0.4)
248
+ "cunnane" (alpha=0.4, beta=0.4)
263
249
Nearly unbiased quantiles for normally distributed data.
264
250
This is the default value.
265
- "gringorten" (alpha=0.44, beta=0.44)
251
+ "gringorten" (alpha=0.44, beta=0.44)
266
252
Used for Gumble distributions.
267
253
268
254
Parameters
0 commit comments