@@ -2127,25 +2127,25 @@ def _make_vtensor_literal_op(
2127
2127
# One element constants are more optimizable as splat DenseElementsAttr. DenseResourceElementsAttr does not
2128
2128
# support splats, so don't use it for that case. In addition, at the time of writing, it has bugs with handling
2129
2129
# 0d tensors.
2130
- if np_tensor .size == 1 :
2131
- try :
2132
- dtype = tensor .dtype
2133
- element_type = TORCH_DTYPE_TO_MLIR_TYPE [dtype ]()
2134
- except KeyError :
2135
- raise TypeError (f"Could not map Torch dtype { dtype } to an MLIR type" )
2136
- elements_attr = DenseElementsAttr .get (
2137
- type = element_type , array = np_tensor , shape = np_tensor .shape
2138
- )
2139
- else :
2140
- bytes_view = np_tensor .view (npy_dtype )
2141
- tensor_type = create_mlir_tensor_type (tensor )
2142
- shape_desc = "_" .join ([str (d ) for d in tensor .shape ])
2143
- blob_name = f"torch_tensor_{ shape_desc } _{ str (tensor .dtype )} "
2144
- elements_attr = DenseResourceElementsAttr .get_from_buffer (
2145
- bytes_view ,
2146
- blob_name ,
2147
- tensor_type ,
2148
- )
2130
+ # if np_tensor.size == 1:
2131
+ try :
2132
+ dtype = tensor .dtype
2133
+ element_type = TORCH_DTYPE_TO_MLIR_TYPE [dtype ]()
2134
+ except KeyError :
2135
+ raise TypeError (f"Could not map Torch dtype { dtype } to an MLIR type" )
2136
+ elements_attr = DenseElementsAttr .get (
2137
+ type = element_type , array = np_tensor , shape = np_tensor .shape
2138
+ )
2139
+ # else:
2140
+ # bytes_view = np_tensor.view(npy_dtype)
2141
+ # tensor_type = create_mlir_tensor_type(tensor)
2142
+ # shape_desc = "_".join([str(d) for d in tensor.shape])
2143
+ # blob_name = f"torch_tensor_{shape_desc}_{str(tensor.dtype)}"
2144
+ # elements_attr = DenseResourceElementsAttr.get_from_buffer(
2145
+ # bytes_view,
2146
+ # blob_name,
2147
+ # tensor_type,
2148
+ # )
2149
2149
mapping .value = elements_attr
2150
2150
else :
2151
2151
elements_attr = mapping .value
0 commit comments