@@ -108,17 +108,6 @@ Qed.
108
108
(* package algebra *)
109
109
(****************** *)
110
110
111
- (********* *)
112
- (* ssrint *)
113
- (********* *)
114
-
115
- Lemma dvdz_charf (R : ringType) (p : nat) :
116
- p \in [char R] -> forall n : int, (p %| n)%Z = (n%:~R == 0 :> R).
117
- Proof .
118
- move=> charRp [] n; rewrite [LHS](dvdn_charf charRp)//.
119
- by rewrite NegzE abszN rmorphN// oppr_eq0.
120
- Qed .
121
-
122
111
(******* *)
123
112
(* poly *)
124
113
(******* *)
@@ -165,185 +154,6 @@ move=> /prim_expr_order/esym/eqP.
165
154
by rewrite expr0n; case: (n =P 0%N); rewrite ?oner_eq0.
166
155
Qed .
167
156
168
- (********* *)
169
- (* intdiv *)
170
- (********* *)
171
-
172
- Lemma eisenstein (p : nat) (q : {poly int}) : prime p -> (size q != 1)%N ->
173
- (~~ (p %| lead_coef q))%Z -> (~~ ((p : int) ^+ 2 %| q`_0))%Z ->
174
- (forall i, (i < (size q).-1)%N -> p %| q`_i)%Z ->
175
- irreducible_poly (map_poly (intr : int -> rat) q).
176
- Proof .
177
- move=> p_prime qN1 Ndvd_pql Ndvd_pq0 dvd_pq.
178
- have qN0 : q != 0 by rewrite -lead_coef_eq0; apply: contraNneq Ndvd_pql => ->.
179
- split.
180
- rewrite size_map_poly_id0 ?intr_eq0 ?lead_coef_eq0//.
181
- by rewrite ltn_neqAle eq_sym qN1 size_poly_gt0.
182
- move=> f' +/dvdpP_rat_int[f [d dN0 feq]]; rewrite {f'}feq size_scale// => fN1.
183
- move=> /= [g q_eq]; rewrite q_eq (eqp_trans (eqp_scale _ _))//.
184
- have fN0 : f != 0 by apply: contra_neq qN0; rewrite q_eq => ->; rewrite mul0r.
185
- have gN0 : g != 0 by apply: contra_neq qN0; rewrite q_eq => ->; rewrite mulr0.
186
- rewrite size_map_poly_id0 ?intr_eq0 ?lead_coef_eq0// in fN1.
187
- have [/eqP/size_poly1P[c cN0 ->]|gN1] := eqVneq (size g) 1%N.
188
- by rewrite mulrC mul_polyC map_polyZ/= eqp_sym eqp_scale// intr_eq0.
189
- have c_neq0 : (lead_coef q)%:~R != 0 :> 'F_p
190
- by rewrite -(dvdz_charf (char_Fp _)).
191
- have : map_poly (intr : int -> 'F_p) q = (lead_coef q)%:~R *: 'X^(size q).-1.
192
- apply/val_inj/(@eq_from_nth _ 0) => [|i]; rewrite size_map_poly_id0//.
193
- by rewrite size_scale// size_polyXn -polySpred.
194
- move=> i_small; rewrite coef_poly i_small coefZ coefXn lead_coefE.
195
- move: i_small; rewrite polySpred// ltnS/=.
196
- case: ltngtP => // [i_lt|->]; rewrite (mulr1, mulr0)//= => _.
197
- by apply/eqP; rewrite -(dvdz_charf (char_Fp _))// dvd_pq.
198
- rewrite [in LHS]q_eq rmorphM/=.
199
- set c := (X in X *: _); set n := (_.-1).
200
- set pf := map_poly _ f; set pg := map_poly _ g => pfMpg.
201
- have dvdXn (r : {poly _}) : size r != 1%N -> r %| c *: 'X^n -> r`_0 = 0.
202
- move=> rN1; rewrite (eqp_dvdr _ (eqp_scale _ _))//.
203
- rewrite -['X]subr0; move=> /dvdp_exp_XsubC[k lekn]; rewrite subr0.
204
- move=> /eqpP[u /andP[u1N0 u2N0]]; have [->|k_gt0] := posnP k.
205
- move=> /(congr1 (size \o val))/eqP.
206
- by rewrite /= !size_scale// size_polyXn (negPf rN1).
207
- move=> /(congr1 (fun p : {poly _} => p`_0))/eqP.
208
- by rewrite !coefZ coefXn ltn_eqF// mulr0 mulf_eq0 (negPf u1N0) => /eqP.
209
- suff : ((p : int) ^+ 2 %| q`_0)%Z by rewrite (negPf Ndvd_pq0).
210
- have := c_neq0; rewrite q_eq coefM big_ord1.
211
- rewrite lead_coefM rmorphM mulf_eq0 negb_or => /andP[lpfN0 qfN0].
212
- have pfN1 : size pf != 1%N by rewrite size_map_poly_id0.
213
- have pgN1 : size pg != 1%N by rewrite size_map_poly_id0.
214
- have /(dvdXn _ pgN1) /eqP : pg %| c *: 'X^n by rewrite -pfMpg dvdp_mull.
215
- have /(dvdXn _ pfN1) /eqP : pf %| c *: 'X^n by rewrite -pfMpg dvdp_mulr.
216
- by rewrite !coef_map// -!(dvdz_charf (char_Fp _))//; apply: dvdz_mul.
217
- Qed .
218
-
219
- (********** *)
220
- (* polydiv *)
221
- (********** *)
222
- Lemma irredp_XaddC (F : fieldType) (x : F) : irreducible_poly ('X + x%:P).
223
- Proof . by rewrite -[x]opprK rmorphN; apply: irredp_XsubC. Qed .
224
-
225
- Lemma eqpW (R : idomainType) (p q : {poly R}) : p = q -> p %= q.
226
- Proof . by move->; rewrite eqpxx. Qed .
227
-
228
- Lemma horner_mod (R : fieldType) (p q : {poly R}) x : root q x ->
229
- (p %% q).[x] = p.[x].
230
- Proof .
231
- by move=> /eqP qx0; rewrite [p in RHS](divp_eq p q) !hornerE qx0 mulr0 add0r.
232
- Qed .
233
-
234
- Lemma root_dvdp (F : idomainType) (p q : {poly F}) (x : F) :
235
- root p x -> p %| q -> root q x.
236
- Proof . rewrite -!dvdp_XsubCl; exact: dvdp_trans. Qed .
237
-
238
- Section multiplicity.
239
- Variable (L : fieldType).
240
-
241
- Definition mup (x : L) (p : {poly L}) :=
242
- [arg max_(n > (0 : 'I_(size p).+1) | ('X - x%:P) ^+ n %| p) n] : nat.
243
-
244
- Lemma mup_geq x q n : q != 0 -> (n <= mup x q)%N = (('X - x%:P) ^+ n %| q).
245
- Proof .
246
- move=> q_neq0; rewrite /mup; symmetry.
247
- case: arg_maxnP; rewrite ?expr0 ?dvd1p//= => i i_dvd gti.
248
- case: ltnP => [|/dvdp_exp2l/dvdp_trans]; last exact.
249
- apply: contraTF => dvdq; rewrite -leqNgt.
250
- suff n_small : (n < (size q).+1)%N by exact: (gti (Ordinal n_small)).
251
- by rewrite ltnS ltnW// -(size_exp_XsubC _ x) dvdp_leq.
252
- Qed .
253
-
254
- Lemma mup_leq x q n : q != 0 -> (mup x q <= n)%N = ~~ (('X - x%:P) ^+ n.+1 %| q).
255
- Proof . by move=> qN0; rewrite leqNgt mup_geq. Qed .
256
-
257
- Lemma mup_ltn x q n : q != 0 -> (mup x q < n)%N = ~~ (('X - x%:P) ^+ n %| q).
258
- Proof . by move=> qN0; rewrite ltnNge mup_geq. Qed .
259
-
260
- Lemma XsubC_dvd x q : q != 0 -> ('X - x%:P %| q) = (0 < mup x q)%N.
261
- Proof . by move=> /mup_geq-/(_ _ 1%N)/esym; apply. Qed .
262
-
263
- Lemma mup_XsubCX n (x y : L) :
264
- mup x (('X - y%:P) ^+ n) = (if (y == x) then n else 0)%N.
265
- Proof .
266
- have Xxn0 : ('X - y%:P) ^+ n != 0 by rewrite ?expf_neq0 ?polyXsubC_eq0.
267
- apply/eqP; rewrite eqn_leq mup_leq ?mup_geq//.
268
- have [->|Nxy] := eqVneq x y.
269
- by rewrite /= dvdpp ?dvdp_Pexp2l ?size_XsubC ?ltnn.
270
- by rewrite dvd1p dvdp_XsubCl /root !hornerE ?horner_exp ?hornerE expf_neq0// subr_eq0.
271
- (* FIXME: remove ?horner_exp ?hornerE when requiring MC >= 1.16.0 *)
272
- Qed .
273
-
274
- Lemma mupNroot (x : L) q : ~~ root q x -> mup x q = 0%N.
275
- Proof .
276
- move=> qNx; have qN0 : q != 0 by apply: contraNneq qNx => ->; rewrite root0.
277
- by move: qNx; rewrite -dvdp_XsubCl XsubC_dvd// lt0n negbK => /eqP.
278
- Qed .
279
-
280
- Lemma mupMl x q1 q2 : ~~ root q1 x -> mup x (q1 * q2) = mup x q2.
281
- Proof .
282
- move=> q1Nx; have q1N0 : q1 != 0 by apply: contraNneq q1Nx => ->; rewrite root0.
283
- have [->|q2N0] := eqVneq q2 0; first by rewrite mulr0.
284
- apply/esym/eqP; rewrite eqn_leq mup_geq ?mulf_neq0// dvdp_mull -?mup_geq//=.
285
- rewrite mup_leq ?mulf_neq0// Gauss_dvdpr -?mup_ltn//.
286
- by rewrite coprimep_expl// coprimep_sym coprimep_XsubC.
287
- Qed .
288
-
289
- Lemma mupM x q1 q2 : q1 != 0 -> q2 != 0 ->
290
- mup x (q1 * q2) = (mup x q1 + mup x q2)%N.
291
- Proof .
292
- move=> q1N0 q2N0; apply/eqP; rewrite eqn_leq mup_leq ?mulf_neq0//.
293
- rewrite mup_geq ?mulf_neq0// exprD ?dvdp_mul; do ?by rewrite -mup_geq.
294
- have [m1 [r1]] := multiplicity_XsubC q1 x; rewrite q1N0 /= => r1Nx ->.
295
- have [m2 [r2]] := multiplicity_XsubC q2 x; rewrite q2N0 /= => r2Nx ->.
296
- rewrite !mupMl// ?mup_XsubCX eqxx/= mulrACA exprS exprD.
297
- rewrite dvdp_mul2r ?mulf_neq0 ?expf_neq0 ?polyXsubC_eq0//.
298
- by rewrite dvdp_XsubCl rootM negb_or r1Nx r2Nx.
299
- Qed .
300
-
301
- Lemma mu_prod_XsubC (x : L) (s : seq L) :
302
- mup x (\prod_(x <- s) ('X - x%:P)) = count_mem x s.
303
- Proof .
304
- elim: s => [|y s IHs]; rewrite (big_cons, big_nil)/=.
305
- by rewrite mupNroot// root1.
306
- rewrite mupM ?polyXsubC_eq0// ?monic_neq0 ?monic_prod_XsubC//.
307
- by rewrite IHs (@mup_XsubCX 1).
308
- Qed .
309
-
310
- Lemma prod_XsubC_eq (s t : seq L) :
311
- \prod_(x <- s) ('X - x%:P) = \prod_(x <- t) ('X - x%:P) -> perm_eq s t.
312
- Proof .
313
- move=> eq_prod; apply/allP => x _ /=; apply/eqP.
314
- by have /(congr1 (mup x)) := eq_prod; rewrite !mu_prod_XsubC.
315
- Qed .
316
-
317
- End multiplicity.
318
-
319
- Lemma dvdp_exp_XsubC (R : idomainType) (p : {poly R}) (c : R) n :
320
- reflect (exists2 k, (k <= n)%N & p %= ('X - c%:P) ^+ k)
321
- (p %| ('X - c%:P) ^+ n).
322
- Proof .
323
- apply: (iffP idP) => [|[k lkn /eqp_dvdl->]]; last by rewrite dvdp_exp2l.
324
- move=> /Pdiv.WeakIdomain.dvdpP[[/= a q] a_neq0].
325
- have [m [r]] := multiplicity_XsubC p c; have [->|pN0]/= := eqVneq p 0.
326
- rewrite mulr0 => _ _ /eqP; rewrite scale_poly_eq0 (negPf a_neq0)/=.
327
- by rewrite expf_eq0/= andbC polyXsubC_eq0.
328
- move=> rNc ->; rewrite mulrA => eq_qrm; exists m.
329
- have: ('X - c%:P) ^+ m %| a *: ('X - c%:P) ^+ n by rewrite eq_qrm dvdp_mull.
330
- by rewrite (eqp_dvdr _ (eqp_scale _ _))// dvdp_Pexp2l// size_XsubC.
331
- suff /eqP : size r = 1%N.
332
- by rewrite size_poly_eq1 => /eqp_mulr/eqp_trans->//; rewrite mul1r eqpxx.
333
- have : r %| a *: ('X - c%:P) ^+ n by rewrite eq_qrm mulrAC dvdp_mull.
334
- rewrite (eqp_dvdr _ (eqp_scale _ _))//.
335
- move: rNc; rewrite -coprimep_XsubC => /(coprimep_expr n) /coprimepP.
336
- by move=> /(_ _ (dvdpp _)); rewrite -size_poly_eq1 => /(_ _)/eqP.
337
- Qed .
338
-
339
- (********* *)
340
- (* vector *)
341
- (********* *)
342
-
343
- Lemma SubvsE (F0 : fieldType) (L : vectType F0) (k : {vspace L}) x (xk : x \in k) :
344
- Subvs xk = vsproj k x.
345
- Proof . by apply/val_inj; rewrite /= vsprojK. Qed .
346
-
347
157
(**************** *)
348
158
(* package field *)
349
159
(**************** *)
0 commit comments