Releases: massquantity/LibRecommender
Releases · massquantity/LibRecommender
v1.0.0
💥 Breaking Changes
- The parameter type of
hidden_units
anddevice
has been changed (#205). - Data construction in model retrain use new functions (#212).
🐛 Bug Fixes
- Fix incompatible batch_normalization and initializer layer from TensorFlow2 (#206).
📚 Documentation
- Add formal documentation (#208).
- Add docstrings (#207).
🧻 Miscellaneous
- Use
pyproject.toml
for building project according to PEP 621, which is also officially recommended in PyPA, pip and Setuptools (#209). - Since currently Python3.6 can't be fully built from
pyproject.toml
in Setuptools, we read related metadata frompyproject.toml
intosetup.py
(#210).
Full Changelog: v0.12.6...v1.0.0
v0.12.6
🐛 Bug Fixes
- Fix sequence data sampling bug (#195)
📚 Documentation
- Add some caveats on duplicate samples in data, see User Guide (#196)
Full Changelog: v0.12.4...v0.12.6
v0.12.4
v0.12.2
💥 Breaking Changes
- The recommendation result will return a dict, with users as keys and
numpy.array
of items as values.
🚀 Features
- Add recommend strategy (#170). See User Guide.
- Add batch recommend (#171).
🐛 Bug Fixes
- Fix
UserCF
&ItemCF
inner_id bugs (#172)
📚 Documentation
- Add Implementation Details (#174)
- Update User Guide (#174)
v0.12.0
🚀 Features
- Support train & save & retrain PyTorch models (#141)
- Add GraphSage, GraphSageDGL (#161)
- Add PinSage (#146), PinSageDGL (#150)
- Add serving models with Rust (#157)
- Add serving using Docker Compose (#156)
🐛 Bug Fixes
- Fix retraining
item2vec
anddeepwalk
models (#163)
📚 Documentation
- Add Rust Serving Guide (#157)
- Refactor docs (#155)
v0.10.2
v0.10.0
- Add focal loss.
- Add embedding APIs.
- Refactor the serving part. The original
serving
module is renamed tolibserving
.
v0.8.4
Add graph algorithms: DeepWalk, NGCF, LightGCN
v0.8.2
Merge pull request #108 from massquantity/dev update README
v0.8.0
Merge pull request #92 from massquantity/dev v0.8.0