Skip to content

Commit c037dce

Browse files
committed
fix sentence
1 parent a0ee597 commit c037dce

File tree

2 files changed

+14
-13
lines changed

2 files changed

+14
-13
lines changed

HoTT-UF-Agda.lagda

Lines changed: 9 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -64,7 +64,7 @@ Compared to most expositions of the subject, we work with explicit
6464
universe levels.
6565

6666
We also [fully discuss and emphasize](HoTT-UF-Agda.html#summary) that
67-
classical axioms can be assumed consistently in univalent mathematics.
67+
non-constructive classical axioms can be assumed consistently in univalent mathematics.
6868

6969
**Keywords.** Univalent mathematics. Univalent foundations. Univalent
7070
type theory. Univalence axiom. `∞`-Groupoid. Homotopy type. Type
@@ -4295,8 +4295,9 @@ What characterizes univalent mathematics is not the univalence
42954295
axiom. We have defined and studied the main concepts of univalent
42964296
mathematics in a pure, spartan MLTT. It is the concepts of hlevel,
42974297
including singleton, subsingleton and set, and the notion of
4298-
equivalence. Univalence *is* a fundamental ingredient, but first we
4299-
need the correct notion of equivalence to be able to formulate it.
4298+
equivalence that are at the heart of univalent mathematics. Univalence
4299+
*is* a fundamental ingredient, but first we need the correct notion of
4300+
equivalence to be able to formulate it.
43004301

43014302
*Remark*. If we formulate univalence with invertible maps instead of
43024303
equivalences, we get a statement that is provably false in MLTT, and
@@ -9562,13 +9563,13 @@ We begin with the following technical lemma:
95629563
r (s (a , b)) ≡⟨ refl _ ⟩
95639564
r (to-×-≡ (f' a , g' b)) ≡⟨ refl _ ⟩
95649565
(f x₀ x₁ (ap pr₁ (to-×-≡ (f' a , g' b))) ,
9565-
g y₀ y₁ (ap pr₂ (to-×-≡ (f' a , g' b)))) ≡⟨ ii ⟩
9566-
(f x₀ x₁ (f' a) , g y₀ y₁ (g' b)) ≡⟨ iii ⟩
9566+
g y₀ y₁ (ap pr₂ (to-×-≡ (f' a , g' b)))) ≡⟨ ii
9567+
(f x₀ x₁ (f' a) , g y₀ y₁ (g' b)) ≡⟨ iii
95679568
a , b ∎
95689569
where
9569-
ii = ap₂ (λ p q → f x₀ x₁ p , g y₀ y₁ q)
9570-
(ap-pr₁-to-×-≡ (f' a) (g' b))
9571-
(ap-pr₂-to-×-≡ (f' a) (g' b))
9570+
ii = ap₂ (λ p q → f x₀ x₁ p , g y₀ y₁ q)
9571+
(ap-pr₁-to-×-≡ (f' a) (g' b))
9572+
(ap-pr₂-to-×-≡ (f' a) (g' b))
95729573
iii = to-×-≡ (inverse-is-section (f x₀ x₁) (i x₀ x₁) a ,
95739574
inverse-is-section (g y₀ y₁) (j y₀ y₁) b)
95749575

agda/HoTT-UF-Agda.agda

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -4966,13 +4966,13 @@ module sip-join where
49664966
r (s (a , b)) ≡⟨ refl _ ⟩
49674967
r (to-×-≡ (f' a , g' b)) ≡⟨ refl _ ⟩
49684968
(f x₀ x₁ (ap pr₁ (to-×-≡ (f' a , g' b))) ,
4969-
g y₀ y₁ (ap pr₂ (to-×-≡ (f' a , g' b)))) ≡⟨ ii ⟩
4970-
(f x₀ x₁ (f' a) , g y₀ y₁ (g' b)) ≡⟨ iii ⟩
4969+
g y₀ y₁ (ap pr₂ (to-×-≡ (f' a , g' b)))) ≡⟨ ii
4970+
(f x₀ x₁ (f' a) , g y₀ y₁ (g' b)) ≡⟨ iii
49714971
a , b ∎
49724972
where
4973-
ii = ap₂ (λ p q f x₀ x₁ p , g y₀ y₁ q)
4974-
(ap-pr₁-to-×-≡ (f' a) (g' b))
4975-
(ap-pr₂-to-×-≡ (f' a) (g' b))
4973+
ii = ap₂ (λ p q f x₀ x₁ p , g y₀ y₁ q)
4974+
(ap-pr₁-to-×-≡ (f' a) (g' b))
4975+
(ap-pr₂-to-×-≡ (f' a) (g' b))
49764976
iii = to-×-≡ (inverse-is-section (f x₀ x₁) (i x₀ x₁) a ,
49774977
inverse-is-section (g y₀ y₁) (j y₀ y₁) b)
49784978

0 commit comments

Comments
 (0)