-
-
Notifications
You must be signed in to change notification settings - Fork 407
Open
Description
I have been running YOLOv11 model on deepstream for quite some time and i got this error randomly(maybe after 1 day or 12 hours). Here is the logs:
ERROR: nvdsinfer_context_impl.cpp:343 Failed to make stream wait on event, cuda err_no:700, err_str:cudaErrorIllegalAddress
ERROR: nvdsinfer_context_impl.cpp:1751 Preprocessor transform input data failed., nvinfer error:NVDSINFER_CUDA_ERROR
ERROR: nvdsinfer_context_impl.cpp:343 Failed to make stream wait on event, cuda err_no:700, err_str:cudaErrorIllegalAddress
ERROR: nvdsinfer_context_impl.cpp:1751 Preprocessor transform input data failed., nvinfer error:NVDSINFER_CUDA_ERROR
ERROR: nvdsinfer_context_impl.cpp:343 Failed to make stream wait on event, cuda err_no:700, err_str:cudaErrorIllegalAddress
ERROR: nvdsinfer_context_impl.cpp:1751 Preprocessor transform input data failed., nvinfer error:NVDSINFER_CUDA_ERROR
Error: gst-stream-error-quark: Buffer conversion failed (1): gstnvinfer.cpp(1574): gst_nvinfer_process_full_frame (): /GstPipeline:pipeline0/GstBin:coco_pipeline_bin/GstNvInfer:coco-detect
Here is some of my configuration(It should be similar to the sample configuration, the only diffrent is i convert my model using trtexec base con conversion configs):
[property]
gpu-id=0
net-scale-factor=0.0039215697906911373
model-color-format=0
onnx-file=/server/server_assets/models/Coco/coco_v11.onnx
model-engine-file=/server/server_assets/models/Coco/coco_v11.engine
#int8-calib-file=calib.table
labelfile-path=labels.txt
batch-size=50
network-mode=0
num-detected-classes=80
interval=0
gie-unique-id=10
process-mode=1
network-type=0
cluster-mode=2
maintain-aspect-ratio=1
symmetric-padding=1
#workspace-size=2000
parse-bbox-func-name=NvDsInferParseYolo
#parse-bbox-func-name=NvDsInferParseYoloCuda
custom-lib-path=/server/src/recognitions/coco/libnvdsinfer_custom_impl_Yolo.so
engine-create-func-name=NvDsInferYoloCudaEngineGet
#filter-out-class-ids=2
[class-attrs-all]
nms-iou-threshold=0.45
pre-cluster-threshold=0.25
topk=300
[conversion]
input_name = input
min_shape = (1, 3, 640, 640)
opt_shape = (50, 3, 640, 640)
max_shape = (50, 3, 640, 640)
atol = 1e-4
network-mode=2
Is this problem known and is there anyway to avoid it?
Metadata
Metadata
Assignees
Labels
No labels