-
Clustering, Unsupervised Learning, by Andrew Ng -- video: 3 minutes
-
Clustering, K-means Algorithm by Andrew Ng -- video 12 minutes
-
Clustering, Optimization Objective, by Andrew Ng -- video: 7 minutes
-
Clustering, K-means Algorithm by Andrew Ng - video 12 minutes
-
Demonstration of k-means assumptions
- plot_kmeans_assumptions.ipynb
-
Running KMeans clustering on Spark (CLASS Presentation: GOOD)
-
In Depth: k-means Clustering: excerpt from the Python Data Science Handbook - docs
-
In Depth: M-means Clustering: excerpt from the Python Data Science Handbook - code
AGENDA:
SCU, Spring 2020
Machine Learning
Date: April 22, 2020
1. Simple Scatter Plots (YOU READ)
https://jakevdp.github.io/PythonDataScienceHandbook/04.02-simple-scatter-plots.html
2. Introduction to K-means (Unsupervised ML Algorithm)
3. Presentation (slides)
3.1 GIT: docs/kmeans/lecture14_clustering_MIT.pdf
3.2 GIT: docs/kmeans/lecture23-kmeans.pptx
4. MUST READ:
Importance of Distance Metrics in Machine Learning Modelling
https://towardsdatascience.com/importance-of-distance-metrics-in-machine-learning-modelling-e51395ffe60d
5. In Depth: k-Means Clustering (MUST READ: VERY GOOD CHAPTER)
https://jakevdp.github.io/PythonDataScienceHandbook/05.11-k-means.html
6. Kmeans Demos (scikit)
6.1 GIT demos/kmeans/Kmeans_simple_example_01.ipynb
6.2 GIT demos/kmeans/Kmeans_simple_example_02_tkinter.ipynb
6.3 GIT demos/kmeans/kmeans_example_01.ipynb
6.4 Example of K-Means Clustering in Python
https://datatofish.com/k-means-clustering-python/
7. Kmeans Demo (Spark ML)