Skip to content

Latest commit

 

History

History
115 lines (66 loc) · 4.84 KB

README.md

File metadata and controls

115 lines (66 loc) · 4.84 KB

K-means Clustering

K-means Definition


Clustering and K-means by Andrew Ng (Stanford University)

  1. Clustering, Unsupervised Learning, by Andrew Ng -- video: 3 minutes

  2. Clustering, K-means Algorithm by Andrew Ng -- video 12 minutes

  3. Clustering, Optimization Objective, by Andrew Ng -- video: 7 minutes


Example of Kmeans

  1. Example of Kmeans Algorithm:

  2. K-means Clustering - video 50 minutes

  3. K-means video: 9 minutes

  4. Clustering, K-means Algorithm by Andrew Ng - video 12 minutes

  5. K-Means Clustering with Scikit-Learn by Example

  6. Introduction with image: Clustering using K-means algorithm

  7. K-means Clustering Algorithm: Explained

  8. K-means: Step-By-Step Example

  9. Numerical Example of Kmeans clustering

  10. Numerical Example of Kmeans clustering

  11. Step by Step KMeans Explained in Detail

  12. Demonstration of k-means assumptions

    • plot_kmeans_assumptions.ipynb
  13. K-means Clustering: Iris data

  14. K-Means Clustering in Python -- detailed


K-means Spark & PySpark

  1. Running KMeans clustering on Spark (CLASS Presentation: GOOD)

  2. UCLA Tutorial, K-means Clustering: GOOD WORKING EXAMPLE

  3. Clustering K-means -- Good Example

  4. In Depth: k-means Clustering: excerpt from the Python Data Science Handbook - docs

  5. In Depth: M-means Clustering: excerpt from the Python Data Science Handbook - code


Finding optimal K for K-means

  1. How to Determine the Optimal K for K-Means?

  2. Determine the optimal value of K in K-Means Clustering

  3. Kmeans clustering with Elbow Method and Silhouette

  4. Yellowbrick — Clustering Evaluation Examples


K-means AGENDA: April 22, 2020

AGENDA:
        SCU, Spring 2020
        Machine Learning 
        Date: April 22, 2020 
        
1. Simple Scatter Plots (YOU READ)
   https://jakevdp.github.io/PythonDataScienceHandbook/04.02-simple-scatter-plots.html
   
2. Introduction to K-means (Unsupervised ML Algorithm)

3. Presentation (slides)
   3.1 GIT: docs/kmeans/lecture14_clustering_MIT.pdf
   3.2 GIT: docs/kmeans/lecture23-kmeans.pptx

4. MUST READ:
   Importance of Distance Metrics in Machine Learning Modelling
   https://towardsdatascience.com/importance-of-distance-metrics-in-machine-learning-modelling-e51395ffe60d

5. In Depth: k-Means Clustering (MUST READ: VERY GOOD CHAPTER)
   https://jakevdp.github.io/PythonDataScienceHandbook/05.11-k-means.html

6. Kmeans Demos (scikit) 
      6.1 GIT demos/kmeans/Kmeans_simple_example_01.ipynb
      6.2 GIT demos/kmeans/Kmeans_simple_example_02_tkinter.ipynb
      6.3 GIT demos/kmeans/kmeans_example_01.ipynb
      6.4 Example of K-Means Clustering in Python   
          https://datatofish.com/k-means-clustering-python/
   
7. Kmeans Demo (Spark ML)