|
| 1 | +from .models.custom_weight_loaders import load_pretrained_weights_into_model_cocavit |
| 2 | +from .models.vision_transformer_custom import vit_large_w_pooler |
| 3 | +from .models.densenetbackbone import DenseNetBackbone |
| 4 | +from .models.remedis_models import resnet152_remedis |
| 5 | +from .models.phikon import ibot_vit |
| 6 | +from .models import TimmCNNEncoder, TimmViTEncoder, HFViTEncoder |
| 7 | +import timm |
| 8 | +import os |
| 9 | +from functools import partial |
| 10 | +import torch |
| 11 | +from loguru import logger |
| 12 | +from .model_registry import _MODEL_CONFIGS |
| 13 | +from .utils import get_eval_transforms, get_constants |
| 14 | +import torch.nn as nn |
| 15 | +import torchvision.models as models |
| 16 | +from .models.post_processor import CLIPVisionModelPostProcessor |
| 17 | + |
| 18 | +def get_encoder(model_name, overwrite_kwargs={}, img_size = 224): |
| 19 | + config = _MODEL_CONFIGS[model_name] |
| 20 | + for k in overwrite_kwargs: |
| 21 | + if k not in config: |
| 22 | + raise ValueError(f"Invalid overwrite key: {k}") |
| 23 | + config[k] = overwrite_kwargs[k] |
| 24 | + model, eval_transform = build_model(config) |
| 25 | + mean, std = get_constants(config['img_norm']) |
| 26 | + |
| 27 | + if eval_transform is None: |
| 28 | + eval_transform = get_eval_transforms(mean, std, target_img_size=img_size) |
| 29 | + return model, eval_transform, config |
| 30 | + |
| 31 | +def load_resnet18_ciga(ckpt_path): |
| 32 | + def clean_state_dict_ciga(state_dict): |
| 33 | + state_dict = {k.replace("model.resnet.", ''):v for k,v in state_dict.items() if 'fc.' not in k} |
| 34 | + return state_dict |
| 35 | + base_encoder = models.resnet18(weights=None) |
| 36 | + base_encoder.fc = nn.Identity() |
| 37 | + state_dict = torch.load(ckpt_path, map_location='cpu')['state_dict'] |
| 38 | + state_dict = clean_state_dict_ciga(state_dict) |
| 39 | + base_encoder.load_state_dict(state_dict, strict=True) |
| 40 | + return base_encoder |
| 41 | + |
| 42 | + |
| 43 | +def build_model(config): |
| 44 | + logger.info(f"Building model with config: {config['name']}") |
| 45 | + load_state_dict = False |
| 46 | + eval_transform = None |
| 47 | + if config.get("checkpoint_path", None) is not None: |
| 48 | + if not os.path.exists(config["checkpoint_path"]): |
| 49 | + if os.environ.get("CHECKPOINT_PATH", None) is not None: |
| 50 | + config["checkpoint_path"] = os.environ["CHECKPOINT_PATH"] |
| 51 | + else: |
| 52 | + raise ValueError(f"checkpoint_path does not exist: {config['checkpoint_path']} and no CHECKPOINT_PATH environment variable set") |
| 53 | + load_state_dict = True |
| 54 | + if config['loader'] == 'timm_wrapper_cnn': |
| 55 | + # uses timm to load a CNN model, then wraps it in a custom module that adds pooling |
| 56 | + model = TimmCNNEncoder(**config['loader_kwargs']) |
| 57 | + elif config['loader'] == 'hf_wrapper_vit': |
| 58 | + model = HFViTEncoder(**config['loader_kwargs']) |
| 59 | + elif config['loader'] == 'conch_openclip_custom': |
| 60 | + from conch.open_clip_custom import create_model_from_pretrained |
| 61 | + model, _ = create_model_from_pretrained(**config['loader_kwargs'], checkpoint_path=config["checkpoint_path"]) |
| 62 | + model.forward = partial(model.encode_image, proj_contrast=False, normalize=False) |
| 63 | + elif config['loader'] == 'timm': |
| 64 | + # uses timm to load a model |
| 65 | + model = timm.create_model(**config['loader_kwargs']) |
| 66 | + elif config['loader'] == 'ctranspath_loader': |
| 67 | + from .models.ctran import ctranspath |
| 68 | + ckpt_path = config["checkpoint_path"] |
| 69 | + assert os.path.isfile(ckpt_path) |
| 70 | + model = ctranspath(img_size=224) |
| 71 | + model.head = nn.Identity() |
| 72 | + state_dict = torch.load(ckpt_path)['model'] |
| 73 | + state_dict = {key: val for key, val in state_dict.items() if 'attn_mask' not in key} |
| 74 | + missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) |
| 75 | + load_state_dict = False |
| 76 | + ### Kimia Net |
| 77 | + elif config['loader'] == 'kimianet_loader': |
| 78 | + ckpt_path = config["checkpoint_path"] |
| 79 | + assert os.path.isfile(ckpt_path) |
| 80 | + model = models.densenet121() |
| 81 | + state_dict = torch.load(ckpt_path, map_location='cpu') |
| 82 | + state_dict = {"features."+k[len("module.model.0."):]:v for k,v in state_dict.items() if "fc_4" not in k} |
| 83 | + missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) |
| 84 | + assert missing_keys == ['classifier.weight', 'classifier.bias'] |
| 85 | + model = DenseNetBackbone(model) |
| 86 | + load_state_dict = False |
| 87 | + elif config['loader'] == 'ciga_loader': |
| 88 | + model = load_resnet18_ciga(config["checkpoint_path"]) |
| 89 | + load_state_dict = False |
| 90 | + elif config['loader'] == 'remedis_loader': |
| 91 | + ckpt_path = config["checkpoint_path"] |
| 92 | + model = resnet152_remedis(ckpt_path=ckpt_path, pretrained=True) |
| 93 | + load_state_dict = False |
| 94 | + elif config['loader'] == 'plip_loader': |
| 95 | + from transformers import CLIPImageProcessor, CLIPVisionModel |
| 96 | + model_name = "vinid/plip" |
| 97 | + img_transforms_clip = CLIPImageProcessor.from_pretrained(model_name) |
| 98 | + model = CLIPVisionModel.from_pretrained( |
| 99 | + model_name) # Use for feature extraction |
| 100 | + model = CLIPVisionModelPostProcessor(model) |
| 101 | + def _eval_transform(img): return img_transforms_clip( |
| 102 | + img, return_tensors='pt', padding=True)['pixel_values'].squeeze(0) |
| 103 | + eval_transform = _eval_transform |
| 104 | + elif config['loader'] == 'ibot_uni': |
| 105 | + ckpt_path = config["checkpoint_path"] |
| 106 | + model = ibot_vit.iBOTViT(architecture="vit_base_pancan", encoder="teacher", weights_path=ckpt_path) |
| 107 | + |
| 108 | + load_state_dict = False |
| 109 | + elif config['loader'] == 'pathchat': |
| 110 | + kwargs = {} |
| 111 | + add_kwargs = {'pooler_n_queries_contrast': 1} |
| 112 | + add_kwargs['legacy'] = False |
| 113 | + kwargs.update(add_kwargs) |
| 114 | + model = vit_large_w_pooler(**kwargs, init_values=1e-6) |
| 115 | + ckpt_path = config["checkpoint_path"] |
| 116 | + checkpoint = ckpt_path.split('/')[-1] |
| 117 | + enc_name = os.path.dirname(ckpt_path).split('/')[-1] |
| 118 | + assets_dir = os.path.dirname(os.path.dirname(ckpt_path)) |
| 119 | + load_pretrained_weights_into_model_cocavit( |
| 120 | + model, enc_name, checkpoint, assets_dir) |
| 121 | + |
| 122 | + load_state_dict = False |
| 123 | + |
| 124 | + elif config['loader'] == 'gigapath': |
| 125 | + from torchvision import transforms |
| 126 | + model = timm.create_model(model_name='vit_giant_patch14_dinov2', |
| 127 | + **{'img_size': 224, 'in_chans': 3, |
| 128 | + 'patch_size': 16, 'embed_dim': 1536, |
| 129 | + 'depth': 40, 'num_heads': 24, 'init_values': 1e-05, |
| 130 | + 'mlp_ratio': 5.33334, 'num_classes': 0}) |
| 131 | + ckpt_path = config["checkpoint_path"] |
| 132 | + state_dict = torch.load(ckpt_path, map_location='cpu') |
| 133 | + model.load_state_dict(state_dict, strict=True) |
| 134 | + eval_transform = transforms.Compose( |
| 135 | + [ |
| 136 | + transforms.CenterCrop(224), |
| 137 | + transforms.ToTensor(), |
| 138 | + transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) |
| 139 | + ] |
| 140 | + ) |
| 141 | + load_state_dict = False |
| 142 | + |
| 143 | + else: |
| 144 | + raise ValueError(f"Unsupported loader type: {config['loader']}") |
| 145 | + if load_state_dict: |
| 146 | + ckpt_path = config["checkpoint_path"] |
| 147 | + strict = config.get("load_state_dict_strict", False) |
| 148 | + logger.info(f"Loading model from checkpoint: {ckpt_path}") |
| 149 | + logger.info(f"load_state_dict_strict: {strict}") |
| 150 | + missing, unexpected = model.load_state_dict(torch.load(ckpt_path, map_location="cpu"), |
| 151 | + strict=strict) |
| 152 | + logger.info(f"Missing keys: {missing}") |
| 153 | + logger.info(f"Unexpected keys: {unexpected}") |
| 154 | + return model, eval_transform |
0 commit comments