@@ -94,6 +94,7 @@ def concatenate_dataframe(self,info_file, csv_list):
94
94
:param csv_list:
95
95
:return:
96
96
"""
97
+ self .log .info ("Part1: Files concatenation" )
97
98
# create empy list for save several df
98
99
pandas_df_list = []
99
100
# create list with anndata object
@@ -192,6 +193,7 @@ def runphenograph(self, markertoexclude, adata):
192
193
:param adata:
193
194
:return:
194
195
"""
196
+ self .log .info ("Part2: Phenograph Clustering" )
195
197
marker = adata .var_names .to_list ()
196
198
markertoinclude = [i for i in marker if i not in markertoexclude ]
197
199
self .log .info ("Markers used for Phenograph clustering:" )
@@ -203,6 +205,7 @@ def runphenograph(self, markertoexclude, adata):
203
205
tmp .obs ['pheno_leiden' ] = tmp .obs ['pheno_leiden' ].astype (int ) + 1
204
206
adata .obs ['cluster' ] = tmp .obs ['pheno_leiden' ]
205
207
adata .obs ['Phenograph_cluster' ] = tmp .obs ['pheno_leiden' ]
208
+ self .log .info ("Part3: UMAP (Uniform Manifold Approximation and Projection) generation" )
206
209
reducer = umap .UMAP (random_state = 42 , n_neighbors = 10 , min_dist = 0.01 )
207
210
embedding = reducer .fit_transform (tmp .X )
208
211
adata .obsm ['X_umap' ] = embedding
@@ -222,6 +225,7 @@ def runparc(self, markertoexclude, adata):
222
225
:param thread:
223
226
:return:
224
227
"""
228
+ self .log .info ("Part2: PARC Clustering" )
225
229
marker = adata .var_names .to_list ()
226
230
markertoinclude = [i for i in marker if i not in markertoexclude ]
227
231
data = adata [:, markertoinclude ].to_df ()
@@ -245,6 +249,7 @@ def runparc(self, markertoexclude, adata):
245
249
p .run_PARC ()
246
250
adata .obs ['cluster' ] = [str (i ) for i in p .labels ]
247
251
adata .obs ['Parc_cluster' ] = [str (i ) for i in p .labels ]
252
+ self .log .info ("Part3: UMAP (Uniform Manifold Approximation and Projection) generation" )
248
253
reducer = umap .UMAP (random_state = 42 ,
249
254
n_neighbors = 10 ,
250
255
min_dist = 0.01 )
@@ -266,6 +271,7 @@ def runflowsom(self, markertoexclude, adata):
266
271
:param markertoexclude:
267
272
:return:
268
273
"""
274
+ self .log .info ("Part2: Flowsom Clustering" )
269
275
adata .to_df ().to_csv (tmp .name , header = True , index = False )
270
276
tt = flowsom (tmp .name , if_fcs = False ,if_drop = True ,drop_col = markertoexclude )
271
277
sample_df = tt .df
@@ -296,6 +302,7 @@ def runflowsom(self, markertoexclude, adata):
296
302
adata .obs ['cluster' ] = adata .obs ['cluster' ].map (res_dct )
297
303
adata .obs ['cluster' ] = adata .obs ['cluster' ] + 1
298
304
adata .obs ['Flowsom_cluster' ] = adata .obs ['cluster' ]
305
+ self .log .info ("Part3: UMAP (Uniform Manifold Approximation and Projection) generation" )
299
306
reducer = umap .UMAP (random_state = 42 ,
300
307
n_neighbors = 10 ,
301
308
min_dist = 0.01 )
@@ -408,6 +415,7 @@ def exporting(self, adata,tool):
408
415
"""
409
416
Export to h5ad file.
410
417
"""
418
+ self .log .info ("Part4: Output Generation" )
411
419
old_names = adata .var_names
412
420
new_names = []
413
421
for _ in range (len (old_names )):
0 commit comments