@@ -125,8 +125,6 @@ def read_fcs(self, path_csv_file):
125
125
Read FCS file version 3 and convert in pandas dataframe
126
126
Returns: Pandas Dataframe
127
127
"""
128
- self .outfig = "/" .join ([self .output_folder , "" .join (["Figures" , self .tool ])])
129
- self .createdir (self .outfig )
130
128
df = DataFrame .from_fcs (path_csv_file , channel_type = 'multi' )
131
129
df .columns = df .columns .map (' :: ' .join )
132
130
df .columns = df .columns .str .replace ('[\" ,\' ]' , '' )
@@ -281,6 +279,8 @@ def concatenate_dataframe(self, info_file, csv_list):
281
279
pass
282
280
self .cleaning .update ({"Before QC" :self .adata .shape [0 ]})
283
281
self .log .info ("{0} cells undergo to clustering analysis" .format (self .adata .shape [0 ]))
282
+ self .outfig = "/" .join ([self .output_folder , "" .join (["Figures" , self .tool ])])
283
+ self .createdir (self .outfig )
284
284
return self .adata
285
285
286
286
def transformation (self ):
@@ -322,7 +322,7 @@ def correct_scanorama(self):
322
322
self .corrected_dataset = self .corrected [0 ].concatenate (self .corrected [1 :],
323
323
join = 'inner' ,
324
324
batch_key = self .batchcov )
325
- self .corrected_dataset .layers ['raw_value' ] = self .adata_subset .X
325
+ self .corrected_dataset .layers ['raw_value' ] = self .adata_subset .layers [ 'raw_value' ]
326
326
self .corrected_dataset .layers ['scaled' ] = self .adata_subset .layers ['scaled' ]
327
327
return self .corrected_dataset
328
328
@@ -615,19 +615,19 @@ def matrixplot(self):
615
615
sc .settings .figdir = self .matrixplot_folder
616
616
if self .runtime != 'UMAP' :
617
617
sc .pl .matrixplot (self .adata_subset , list (self .adata_subset .var_names ), "pheno_leiden" ,
618
- dendrogram = True , vmin = - 2 , vmax = 2 , cmap = 'RdBu_r' , layer = "scaled" ,
619
- show = False , swap_axes = False , return_fig = False ,
620
- save = "." .join (["matrixplot_mean_z_score" , self .fileformat ]))
618
+ dendrogram = True , vmin = - 2 , vmax = 2 , cmap = 'RdBu_r' , layer = "scaled" ,
619
+ show = False , swap_axes = False , return_fig = False ,
620
+ save = "." .join (["matrixplot_mean_z_score" , self .fileformat ]))
621
621
sc .pl .matrixplot (self .adata_subset , list (self .adata_subset .var_names ), "pheno_leiden" ,
622
- dendrogram = True , vmin = - 2 , vmax = 2 , cmap = 'RdBu_r' , layer = "scaled" ,
623
- show = False , swap_axes = False , return_fig = False ,
624
- save = "." .join (["matrixplot_mean_z_score" , 'svg' ]))
622
+ dendrogram = True , vmin = - 2 , vmax = 2 , cmap = 'RdBu_r' , layer = "scaled" ,
623
+ show = False , swap_axes = False , return_fig = False ,
624
+ save = "." .join (["matrixplot_mean_z_score" , 'svg' ]))
625
625
sc .pl .matrixplot (self .adata_subset , list (self .adata_subset .var_names ), "pheno_leiden" ,
626
- dendrogram = True , cmap = 'Blues' , standard_scale = 'var' ,
627
- colorbar_title = 'column scaled\n expression' , layer = "scaled" ,
628
- swap_axes = False , return_fig = False ,
629
- show = False ,
630
- save = "." .join (["matrixplot_column_scaled_expression" , self .fileformat ]))
626
+ dendrogram = True , cmap = 'Blues' , standard_scale = 'var' ,
627
+ colorbar_title = 'column scaled\n expression' , layer = "scaled" ,
628
+ swap_axes = False , return_fig = False ,
629
+ show = False ,
630
+ save = "." .join (["matrixplot_column_scaled_expression" , self .fileformat ]))
631
631
else :
632
632
pass
633
633
@@ -828,8 +828,8 @@ def runflowsom(self):
828
828
self .flowsomDF = pd .read_csv (self .output_folder + "/output_flowsom.csv" , sep = ',' , header = 0 , index_col = 0 )
829
829
self .adata_subset .obs ['Clusters' ] = self .flowsomDF ['Clusters' ].values
830
830
self .adata_subset .obs ['Metaclusters' ] = self .flowsomDF ['Metaclusters' ].values
831
- self .adata .obs ['Cluster_Flowsom' ] = self .adata_subset .obs ['Clusters' ].astype ( 'category' )
832
- self .adata .obs ['MetaCluster_Flowsom' ] = self .adata_subset .obs ['Metaclusters' ].astype ( 'category' )
831
+ self .adata .obs ['Cluster_Flowsom' ] = self .adata_subset .obs ['Clusters' ].values
832
+ self .adata .obs ['MetaCluster_Flowsom' ] = self .adata_subset .obs ['Metaclusters' ].values
833
833
self .adata_subset .obs ['pheno_leiden' ] = self .flowsomDF ['Metaclusters' ].values
834
834
self .adata_subset .obs ['pheno_leiden' ] = self .adata_subset .obs ['pheno_leiden' ].astype ("category" )
835
835
self .adata .obs ['cluster' ] = self .flowsomDF ['Metaclusters' ].values
@@ -1028,7 +1028,7 @@ def groupbycluster(self):
1028
1028
self .tmp ['VIA' ] = _
1029
1029
else :
1030
1030
self .tmp ['FlowSOM' ] = _
1031
- self .tmp ['MetaCluster_FlowSOM' ] = self .adata [self .adata .obs ['cluster' ].isin ([_ ]) ].obs [
1031
+ self .tmp ['MetaCluster_FlowSOM' ] = self .adata [self .adata .obs ['cluster' ].isin ([int ( _ )]),: ].obs [
1032
1032
'Cluster_Flowsom' ].values
1033
1033
self .tmp .to_csv ("/" .join ([self .output_folder , "" .join (["CSVcluster" , self .tool ]),
1034
1034
"" .join ([self .analysis_name , "_" , str (_ ), ".csv" ])]), header = True ,
0 commit comments