Skip to content

Commit 16408c0

Browse files
committed
update
1 parent f2ed18b commit 16408c0

File tree

1 file changed

+17
-17
lines changed

1 file changed

+17
-17
lines changed

PhenoFunctions_v6.py

Lines changed: 17 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -125,8 +125,6 @@ def read_fcs(self, path_csv_file):
125125
Read FCS file version 3 and convert in pandas dataframe
126126
Returns: Pandas Dataframe
127127
"""
128-
self.outfig = "/".join([self.output_folder, "".join(["Figures", self.tool])])
129-
self.createdir(self.outfig)
130128
df = DataFrame.from_fcs(path_csv_file, channel_type = 'multi')
131129
df.columns = df.columns.map(' :: '.join)
132130
df.columns = df.columns.str.replace('[\",\']', '')
@@ -281,6 +279,8 @@ def concatenate_dataframe(self, info_file, csv_list):
281279
pass
282280
self.cleaning.update({"Before QC":self.adata.shape[0]})
283281
self.log.info("{0} cells undergo to clustering analysis".format(self.adata.shape[0]))
282+
self.outfig = "/".join([self.output_folder, "".join(["Figures", self.tool])])
283+
self.createdir(self.outfig)
284284
return self.adata
285285

286286
def transformation(self):
@@ -322,7 +322,7 @@ def correct_scanorama(self):
322322
self.corrected_dataset = self.corrected[0].concatenate(self.corrected[1:],
323323
join = 'inner',
324324
batch_key = self.batchcov)
325-
self.corrected_dataset.layers['raw_value'] = self.adata_subset.X
325+
self.corrected_dataset.layers['raw_value'] = self.adata_subset.layers['raw_value']
326326
self.corrected_dataset.layers['scaled'] = self.adata_subset.layers['scaled']
327327
return self.corrected_dataset
328328

@@ -615,19 +615,19 @@ def matrixplot(self):
615615
sc.settings.figdir = self.matrixplot_folder
616616
if self.runtime != 'UMAP':
617617
sc.pl.matrixplot(self.adata_subset, list(self.adata_subset.var_names), "pheno_leiden",
618-
dendrogram = True, vmin = -2, vmax = 2, cmap = 'RdBu_r', layer = "scaled",
619-
show = False, swap_axes = False, return_fig = False,
620-
save = ".".join(["matrixplot_mean_z_score", self.fileformat]))
618+
dendrogram=True, vmin=-2, vmax=2, cmap='RdBu_r', layer="scaled",
619+
show=False, swap_axes=False, return_fig=False,
620+
save=".".join(["matrixplot_mean_z_score", self.fileformat]))
621621
sc.pl.matrixplot(self.adata_subset, list(self.adata_subset.var_names), "pheno_leiden",
622-
dendrogram = True, vmin = -2, vmax = 2, cmap = 'RdBu_r', layer = "scaled",
623-
show = False, swap_axes = False, return_fig = False,
624-
save = ".".join(["matrixplot_mean_z_score", 'svg']))
622+
dendrogram=True, vmin=-2, vmax=2, cmap='RdBu_r', layer="scaled",
623+
show=False, swap_axes=False, return_fig=False,
624+
save=".".join(["matrixplot_mean_z_score", 'svg']))
625625
sc.pl.matrixplot(self.adata_subset, list(self.adata_subset.var_names), "pheno_leiden",
626-
dendrogram = True, cmap = 'Blues', standard_scale = 'var',
627-
colorbar_title = 'column scaled\nexpression', layer = "scaled",
628-
swap_axes = False, return_fig = False,
629-
show = False,
630-
save = ".".join(["matrixplot_column_scaled_expression", self.fileformat]))
626+
dendrogram=True, cmap='Blues', standard_scale='var',
627+
colorbar_title='column scaled\nexpression', layer="scaled",
628+
swap_axes=False, return_fig=False,
629+
show=False,
630+
save=".".join(["matrixplot_column_scaled_expression", self.fileformat]))
631631
else:
632632
pass
633633

@@ -828,8 +828,8 @@ def runflowsom(self):
828828
self.flowsomDF = pd.read_csv(self.output_folder+"/output_flowsom.csv", sep=',', header=0, index_col=0)
829829
self.adata_subset.obs['Clusters'] = self.flowsomDF['Clusters'].values
830830
self.adata_subset.obs['Metaclusters'] = self.flowsomDF['Metaclusters'].values
831-
self.adata.obs['Cluster_Flowsom'] = self.adata_subset.obs['Clusters'].astype('category')
832-
self.adata.obs['MetaCluster_Flowsom'] = self.adata_subset.obs['Metaclusters'].astype('category')
831+
self.adata.obs['Cluster_Flowsom'] = self.adata_subset.obs['Clusters'].values
832+
self.adata.obs['MetaCluster_Flowsom'] = self.adata_subset.obs['Metaclusters'].values
833833
self.adata_subset.obs['pheno_leiden'] = self.flowsomDF['Metaclusters'].values
834834
self.adata_subset.obs['pheno_leiden'] = self.adata_subset.obs['pheno_leiden'].astype("category")
835835
self.adata.obs['cluster'] =self.flowsomDF['Metaclusters'].values
@@ -1028,7 +1028,7 @@ def groupbycluster(self):
10281028
self.tmp['VIA'] = _
10291029
else:
10301030
self.tmp['FlowSOM'] = _
1031-
self.tmp['MetaCluster_FlowSOM'] = self.adata[self.adata.obs['cluster'].isin([_])].obs[
1031+
self.tmp['MetaCluster_FlowSOM'] = self.adata[self.adata.obs['cluster'].isin([int(_)]),:].obs[
10321032
'Cluster_Flowsom'].values
10331033
self.tmp.to_csv("/".join([self.output_folder, "".join(["CSVcluster", self.tool]),
10341034
"".join([self.analysis_name, "_", str(_), ".csv"])]), header = True,

0 commit comments

Comments
 (0)