@@ -100,7 +100,7 @@ class Connection:
100
100
Defaults to `None`.
101
101
engine: Which engine to use, `"spark"`, `"python"` or `"training"`. Defaults to `None`,
102
102
which initializes the engine to Spark if the environment provides Spark, for
103
- example on Hopsworks and Databricks, or falls back on Hive in Python if Spark is not
103
+ example on Hopsworks and Databricks, or falls back to Python if Spark is not
104
104
available, e.g. on local Python environments or AWS SageMaker. This option
105
105
allows you to override this behaviour. `"training"` engine is useful when only
106
106
feature store metadata is needed, for example training dataset location and label
@@ -151,7 +151,6 @@ def __init__(
151
151
def get_feature_store (
152
152
self ,
153
153
name : Optional [str ] = None ,
154
- engine : Optional [str ] = None ,
155
154
): # -> feature_store.FeatureStore
156
155
# the typing is commented out due to circular dependency, it breaks auto_doc.py
157
156
"""Get a reference to a feature store to perform operations on.
@@ -161,25 +160,10 @@ def get_feature_store(
161
160
162
161
# Arguments
163
162
name: The name of the feature store, defaults to `None`.
164
- engine: Which engine to use, `"spark"`, `"python"` or `"training"`. Defaults to `None`,
165
- which initializes the engine to Spark if the environment provides Spark, for
166
- example on Hopsworks and Databricks, or falls back on Hive in Python if Spark is not
167
- available, e.g. on local Python environments or AWS SageMaker. This option
168
- allows you to override this behaviour. `"training"` engine is useful when only
169
- feature store metadata is needed, for example training dataset location and label
170
- information when Hopsworks training experiment is conducted.
171
163
172
164
# Returns
173
165
`FeatureStore`. A feature store handle object to perform operations on.
174
166
"""
175
- # Ensure the engine is initialized and of right type
176
- from hsfs import engine as hsfs_engine
177
-
178
- if engine :
179
- global _hsfs_engine_type
180
- _hsfs_engine_type = engine
181
- hsfs_engine .get_instance ()
182
-
183
167
if not name :
184
168
name = client .get_instance ()._project_name
185
169
return self ._feature_store_api .get (util .append_feature_store_suffix (name ))
@@ -532,7 +516,7 @@ def connection(
532
516
Defaults to `None`.
533
517
engine: Which engine to use, `"spark"`, `"python"` or `"training"`. Defaults to `None`,
534
518
which initializes the engine to Spark if the environment provides Spark, for
535
- example on Hopsworks and Databricks, or falls back on Hive in Python if Spark is not
519
+ example on Hopsworks and Databricks, or falls back to Python if Spark is not
536
520
available, e.g. on local Python environments or AWS SageMaker. This option
537
521
allows you to override this behaviour. `"training"` engine is useful when only
538
522
feature store metadata is needed, for example training dataset location and label
0 commit comments