Skip to content

Commit 3585feb

Browse files
committed
unumpy.average: init
Ref: #38
1 parent 5928ece commit 3585feb

File tree

4 files changed

+170
-0
lines changed

4 files changed

+170
-0
lines changed

CHANGES.rst

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,7 @@ Fixes:
88

99
- fix `readthedocs` configuration so that the build passes (#254)
1010
- Add `unumpy.covariance_matrix`: A vectorized variant of the pure Python function `covariance_matrix` (#265)
11+
- Add `unumpy.average` to calculate uncertainties aware average (#264)
1112

1213
3.2.2 2024-July-08
1314
-----------------------

doc/numpy_guide.rst

Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -144,6 +144,29 @@ functions is available in the documentation for :mod:`uncertainties.umath`.
144144
.. index::
145145
pair: testing and operations (in arrays); NaN
146146

147+
Uncertainties aware average
148+
---------------------------
149+
150+
If you have measured a certain value multiple times, with a different
151+
uncertainty every measurement. Averaging over the results in a manner aware of
152+
the different uncertainties, is not trivial. The function ``unumpy.average()``
153+
does that:
154+
155+
>>> measurements = numpy.array([2.1, 2.0, 2.05, 2.08, 2.02])
156+
>>> stds = numpy.array([0.05, 0.03, 0.04, 0.06, 0.05])
157+
>>> arr = unumpy.uarray(measurements, stds)
158+
>>> unumpy.average(arr)
159+
2.03606+/-0.019
160+
161+
Note how that function gives a value different from numpy's ``mean`` function:
162+
163+
>>> numpy.mean(arr)
164+
2.050+/-0.019
165+
166+
If you have an array with correlated values, the covariances will be considered
167+
as well. You can also specify an ``axes`` argument, to specify a certain axis
168+
or a tuple of axes upon which to average the result.
169+
147170
NaN testing and NaN-aware operations
148171
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
149172

tests/test_unumpy.py

Lines changed: 69 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,5 @@
1+
import pytest
2+
13
try:
24
import numpy
35
except ImportError:
@@ -300,3 +302,70 @@ def test_array_comparisons():
300302
# For matrices, 1D arrays are converted to 2D arrays:
301303
mat = unumpy.umatrix([1, 2], [1, 4])
302304
assert numpy.all((mat == [mat[0, 0], 4]) == [True, False])
305+
306+
307+
class TestAverage:
308+
arr1d = unumpy.uarray(
309+
[2.1, 2.0, 2.05, 2.08, 2.02],
310+
[0.05, 0.03, 0.04, 0.06, 0.05],
311+
)
312+
313+
def __init__(self):
314+
sigma2d = 0.3
315+
means2d = np.linspace(4, 20, num=50).reshape(5, 10)
316+
self.arr2d = unumpy.uarray(
317+
np.random.normal(loc=means, scale=sigma2d),
318+
np.random.uniform(low=0, high=sigma2d),
319+
)
320+
meansNd = np.random.rand(4, 7, 5, 2, 10, 14) + 10
321+
self.arrNd = unumpy.uarray(
322+
meansNd, np.random.uniform(low=0, high=0.2, size=meansNd.shape)
323+
)
324+
325+
def test_average_type_check():
326+
with pytest.raises(ValueError):
327+
unumpy.average(numpy.array(["bla"]))
328+
329+
def test_average_example():
330+
"""Tests the example from the docs."""
331+
avg = unumpy.average(self.arr1d)
332+
assert np.isclose(avg.n, 2.0360612043435338)
333+
assert np.isclose(avg.s, 0.018851526708200846)
334+
335+
@pytest.mark.parametrize("invalid_axis", [1, 2, 3])
336+
def test_average1d_invalid_axes(invalid_axis):
337+
with pytest.raises(ValueError):
338+
unumpy.average(self.arr1d, axes=invalid_axis)
339+
340+
@pytest.mark.parametrize("invalid_axis", [2, 3])
341+
def test_average2d_invalid_axes(invalid_axis):
342+
with pytest.raises(ValueError):
343+
unumpy.average(self.arr1d, axes=invalid_axis)
344+
345+
@pytest.mark.parametrize(
346+
"expected_shape, axis_argument",
347+
[
348+
((), None),
349+
# According to the linspace reshape in __init__
350+
((5,), 1),
351+
((5,), (1,)),
352+
((10,), 0),
353+
((10,), (0,)),
354+
],
355+
)
356+
def test_average2d_shape(expected_shape, axis_argument):
357+
assert unumpy.average(self.arr2d, axes=axis_argument).shape == expected_shape
358+
359+
@pytest.mark.parametrize(
360+
"expected_shape, axis_argument",
361+
[
362+
((), None),
363+
# According to random.rand() argument in __init__
364+
((4, 5, 10), (1, 3, 5)),
365+
((10,), (0, 1, 2, 3, 4, 6)),
366+
((14,), (0, 1, 2, 3, 4, 5)),
367+
((7, 2), (0, 2, 4, 5, 6)),
368+
],
369+
)
370+
def test_averageNd_shape(expected_shape, axis_argument):
371+
assert unumpy.average(self.arrNd, axes=axis_argument).shape == expected_shape

uncertainties/unumpy/core.py

Lines changed: 77 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -30,10 +30,87 @@
3030
# Utilities:
3131
"nominal_values",
3232
"std_devs",
33+
"average",
3334
# Classes:
3435
"matrix",
3536
]
3637

38+
39+
def _flatten_array_by_axes(arr, axes):
40+
"""
41+
Return arr, reshaped such that the axes listed in parameter ``axes`` are
42+
flattened, and become the last axis of the resulting array. A utility used
43+
for `:func:uncertainties.unumpy.average`.
44+
"""
45+
arr = np.asanyarray(arr)
46+
if axes is None:
47+
return arr.flatten()
48+
# The following sanity checks on axes can be replaced by
49+
# np.lib.array_utils.normalize_axis_tuple once we will require a minimum
50+
# version of numpy 2.x.
51+
if type(axes) not in (tuple, list):
52+
try:
53+
axes = [operator.index(axes)]
54+
except TypeError:
55+
pass
56+
axes = tuple(axes)
57+
if len(set(axes)) != len(axes):
58+
raise ValueError("repeated axis found in axes argument")
59+
# This one is not checked by np.lib.array_utils.normalize_axis_tuple
60+
if max(axes) >= arr.ndim:
61+
raise ValueError(
62+
f"Cannot average over an inexistent axis {max(axes)} >= arr.ndim = "
63+
f"{arr.ndim}"
64+
)
65+
new_shape = []
66+
# To hold the product of the dimensions to flatten
67+
flatten_size = 1
68+
for i in range(len(arr.shape)):
69+
if i in axes:
70+
flatten_size *= arr.shape[i] # Multiply dimensions to flatten
71+
else:
72+
new_shape.append(arr.shape[i]) # Keep the dimension
73+
# This way the shapes to average over are flattend, in the end.
74+
new_shape.append(flatten_size)
75+
return arr.reshape(*new_shape)
76+
77+
78+
def average(arr, axes=None):
79+
"""
80+
Return a weighted averaged along with a weighted mean over a certain axis
81+
or a axes. The formulas implemented by this are:
82+
83+
$$ \mu = \frac{\sum_i (x_i/\sigma_i^2)}{\sum_i \sigma_i^{-2}}$$
84+
85+
$$\sigma_\mu = \frac{\sqrt{\sum_{i,j} \sigma_i^{-2} \sigma_j^{-2} \cdot Cov(x_i, x_j)}}{\sum_i \sigma_i^{-2}}$$
86+
87+
Where of course $Cov(x_i, x_i) = \sigma_i^2$.
88+
89+
By default, operates on all axes of the given array.
90+
"""
91+
arr = _flatten_array_by_axes(arr, axes)
92+
if not isinstance(arr.flat[0], core.Variable):
93+
raise ValueError(
94+
"unumpy.average is meant to operate upon numpy arrays of ufloats, "
95+
"not pure numpy arrays"
96+
)
97+
cov_matrix = covariance_matrix(arr)
98+
weights = numpy.diagonal(cov_matrix, axis1=-2, axis2=-1) ** -1
99+
weights_sum = weights.sum(axis=-1)
100+
return uarray(
101+
(nominal_values(arr) * weights).sum(axis=-1) / weights_sum,
102+
numpy.sqrt(
103+
numpy.einsum(
104+
"...i,...ij,...j",
105+
weights,
106+
cov_matrix,
107+
weights,
108+
)
109+
)
110+
/ weights_sum,
111+
)
112+
113+
37114
###############################################################################
38115
# Utilities:
39116

0 commit comments

Comments
 (0)