@@ -1177,10 +1177,9 @@ static AffineExpr getSemiAffineExprFromFlatForm(ArrayRef<int64_t> flatExprs,
1177
1177
if (flatExprs[numDims + numSymbols + it.index ()] == 0 )
1178
1178
continue ;
1179
1179
AffineExpr expr = it.value ();
1180
- auto binaryExpr = dyn_cast<AffineBinaryOpExpr>(expr);
1181
- if (!binaryExpr)
1182
- continue ;
1183
-
1180
+ // A local expression cannot be a dimension, symbol or a constant -- it
1181
+ // should be a binary op expression.
1182
+ auto binaryExpr = cast<AffineBinaryOpExpr>(expr);
1184
1183
AffineExpr lhs = binaryExpr.getLHS ();
1185
1184
AffineExpr rhs = binaryExpr.getRHS ();
1186
1185
if (!((isa<AffineDimExpr>(lhs) || isa<AffineSymbolExpr>(lhs)) &&
@@ -1274,6 +1273,27 @@ SimpleAffineExprFlattener::SimpleAffineExprFlattener(unsigned numDims,
1274
1273
operandExprStack.reserve (8 );
1275
1274
}
1276
1275
1276
+ LogicalResult SimpleAffineExprFlattener::addExprToFlattenedList (
1277
+ AffineExpr expr, ArrayRef<int64_t > lhs, ArrayRef<int64_t > rhs,
1278
+ SmallVectorImpl<int64_t > &result) {
1279
+ if (auto constExpr = dyn_cast<AffineConstantExpr>(expr)) {
1280
+ std::fill (result.begin (), result.end (), 0 );
1281
+ result[getConstantIndex ()] = constExpr.getValue ();
1282
+ return success ();
1283
+ }
1284
+ if (auto dimExpr = dyn_cast<AffineDimExpr>(expr)) {
1285
+ std::fill (result.begin (), result.end (), 0 );
1286
+ result[getDimStartIndex () + dimExpr.getPosition ()] = 1 ;
1287
+ return success ();
1288
+ }
1289
+ if (auto symExpr = dyn_cast<AffineSymbolExpr>(expr)) {
1290
+ std::fill (result.begin (), result.end (), 0 );
1291
+ result[getSymbolStartIndex () + symExpr.getPosition ()] = 1 ;
1292
+ return success ();
1293
+ }
1294
+ return addLocalVariableSemiAffine (lhs, rhs, expr, result, result.size ());
1295
+ }
1296
+
1277
1297
// In pure affine t = expr * c, we multiply each coefficient of lhs with c.
1278
1298
//
1279
1299
// In case of semi affine multiplication expressions, t = expr * symbolic_expr,
@@ -1295,7 +1315,7 @@ LogicalResult SimpleAffineExprFlattener::visitMulExpr(AffineBinaryOpExpr expr) {
1295
1315
localExprs, context);
1296
1316
AffineExpr b = getAffineExprFromFlatForm (rhs, numDims, numSymbols,
1297
1317
localExprs, context);
1298
- return addLocalVariableSemiAffine (mulLhs, rhs, a * b, lhs, lhs. size () );
1318
+ return addExprToFlattenedList ( a * b, mulLhs, rhs, lhs);
1299
1319
}
1300
1320
1301
1321
// Get the RHS constant.
@@ -1347,8 +1367,7 @@ LogicalResult SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) {
1347
1367
lhs, numDims, numSymbols, localExprs, context);
1348
1368
AffineExpr divisorExpr = getAffineExprFromFlatForm (rhs, numDims, numSymbols,
1349
1369
localExprs, context);
1350
- AffineExpr modExpr = dividendExpr % divisorExpr;
1351
- return addLocalVariableSemiAffine (modLhs, rhs, modExpr, lhs, lhs.size ());
1370
+ return addExprToFlattenedList (dividendExpr % divisorExpr, modLhs, rhs, lhs);
1352
1371
}
1353
1372
1354
1373
int64_t rhsConst = rhs[getConstantIndex ()];
@@ -1482,7 +1501,7 @@ LogicalResult SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr,
1482
1501
AffineExpr b = getAffineExprFromFlatForm (rhs, numDims, numSymbols,
1483
1502
localExprs, context);
1484
1503
AffineExpr divExpr = isCeil ? a.ceilDiv (b) : a.floorDiv (b);
1485
- return addLocalVariableSemiAffine ( divLhs, rhs, divExpr, lhs, lhs. size () );
1504
+ return addExprToFlattenedList (divExpr, divLhs, rhs, lhs);
1486
1505
}
1487
1506
1488
1507
// This is a pure affine expr; the RHS is a positive constant.
0 commit comments