Skip to content

How to know when should stop training in your code based on Loss and IoU output ? #5

@SomayeKarimpour

Description

@SomayeKarimpour

Hi
I did train the model and I got training loss and validation for each epoch among training like bellow:
....
Epoch 150 |Iter 81200 |Loss 0.03061891
Epoch 150 |Iter 81300 |Loss 0.031306103
Epoch 150 |Iter 81400 |Loss 0.034883704
Epoch 150 |Iter 81500 |Loss 0.0326193
Epoch 150 |Iter 81600 |Loss 0.034357037
Time: 3870.109310865402
validate...
last iou valu:0.65
new_iou value:0.9206227973963147
Save the checkpoint...
Epoch 151 |Iter 81700 |Loss 0.03399411
Epoch 151 |Iter 81800 |Loss 0.030656744
Epoch 151 |Iter 81900 |Loss 0.033804014
Epoch 151 |Iter 82000 |Loss 0.034370854
Epoch 151 |Iter 82100 |Loss 0.033772305
Epoch 151 |Iter 82200 |Loss 0.03267585
Time: 315.97310042381287
validate...
last iou valu:0.9206227973963147
new_iou value:0.9007333493933005
Epoch 152 |Iter 82300 |Loss 0.029079173
Epoch 152 |Iter 82400 |Loss 0.031596527
Epoch 152 |Iter 82500 |Loss 0.03290856
Epoch 152 |Iter 82600 |Loss 0.03253841
Epoch 152 |Iter 82700 |Loss 0.029811475
Time: 315.04660058021545
validate...
last iou valu:0.9206227973963147
new_iou value:0.9206331145003502
...
How can I know when should I stop training? and how to know about overfitting?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions