Skip to content

Commit ddd4414

Browse files
authored
a/e and energy cal stuff (#585)
* add check on fwhm plot nan lims * fix error prop and mean plot
1 parent 63dd3dc commit ddd4414

File tree

2 files changed

+8
-8
lines changed

2 files changed

+8
-8
lines changed

src/pygama/pargen/AoE_cal.py

Lines changed: 6 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -718,10 +718,9 @@ def get_survival_fraction(
718718
surv_err = surv_errs["n_sig"]
719719

720720
pc_n = ct_n + surv_n
721-
pc_err = np.sqrt(surv_err**2 + ct_err**2)
722721

723722
sf = (surv_n / pc_n) * 100
724-
err = sf * np.sqrt((pc_err / pc_n) ** 2 + (surv_err / surv_n) ** 2)
723+
err = sf * np.sqrt((ct_err / pc_n**2) ** 2 + (surv_err / pc_n**2) ** 2)
725724
return sf, err, cut_pars, surv_pars
726725

727726

@@ -835,10 +834,9 @@ def compton_sf(cut_param, low_cut_val, high_cut_val=None, mode="greater", dt_mas
835834
surv_err = np.sqrt(len(cut_param[mask]))
836835

837836
pc_n = ct_n + surv_n
838-
pc_err = np.sqrt(surv_err**2 + ct_err**2)
839837

840838
sf = (surv_n / pc_n) * 100
841-
err = sf * np.sqrt((pc_err / pc_n) ** 2 + (surv_err / surv_n) ** 2)
839+
err = sf * np.sqrt((ct_err / pc_n**2) ** 2 + (surv_err / pc_n**2) ** 2)
842840

843841
return {
844842
"low_cut": low_cut_val,
@@ -1954,8 +1952,8 @@ def plot_aoe_mean_time(
19541952
datetime.strptime(tstamp, "%Y%m%dT%H%M%SZ")
19551953
for tstamp in aoe_class.cal_dicts
19561954
],
1957-
y1=np.array(grouped_means) - 0.2 * np.array(aoe_class.timecorr_df["res"]),
1958-
y2=np.array(grouped_means) + 0.2 * np.array(aoe_class.timecorr_df["res"]),
1955+
y1=np.array(grouped_means) - 0.2 * np.array(aoe_class.timecorr_df["sigma"]),
1956+
y2=np.array(grouped_means) + 0.2 * np.array(aoe_class.timecorr_df["sigma"]),
19591957
color="green",
19601958
alpha=0.2,
19611959
)
@@ -1964,8 +1962,8 @@ def plot_aoe_mean_time(
19641962
datetime.strptime(tstamp, "%Y%m%dT%H%M%SZ")
19651963
for tstamp in aoe_class.cal_dicts
19661964
],
1967-
y1=np.array(grouped_means) - 0.4 * np.array(aoe_class.timecorr_df["res"]),
1968-
y2=np.array(grouped_means) + 0.4 * np.array(aoe_class.timecorr_df["res"]),
1965+
y1=np.array(grouped_means) - 0.4 * np.array(aoe_class.timecorr_df["sigma"]),
1966+
y2=np.array(grouped_means) + 0.4 * np.array(aoe_class.timecorr_df["sigma"]),
19691967
color="yellow",
19701968
alpha=0.2,
19711969
)

src/pygama/pargen/energy_cal.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1719,6 +1719,8 @@ def plot_eres_fit(self, data, erange=(200, 2700), figsize=(12, 8), fontsize=12):
17191719
ax1.plot(qbb_line_vx, qbb_line_vy, lw=1, c="r", ls="--")
17201720

17211721
ax1.set_xlim(erange)
1722+
if np.isnan(low_lim):
1723+
low_lim = 0
17221724
ax1.set_ylim([low_lim, None])
17231725
ax1.set_ylabel("FWHM energy resolution (keV)")
17241726
for _, fwhm_dict in fwhm_dicts.items():

0 commit comments

Comments
 (0)