Skip to content

Commit b939fef

Browse files
authored
chore: fix implicitness in refl/rfl lemma binders (#5077)
1 parent eb15c08 commit b939fef

File tree

1 file changed

+9
-6
lines changed

1 file changed

+9
-6
lines changed

src/Init/Data/List/Sublist.lean

Lines changed: 9 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -558,11 +558,14 @@ theorem IsSuffix.isInfix : l₁ <:+ l₂ → l₁ <:+: l₂ := fun ⟨t, h⟩ =>
558558

559559
@[simp] theorem nil_infix {l : List α} : [] <:+: l := nil_prefix.isInfix
560560

561-
@[simp] theorem prefix_refl {l : List α} : l <+: l := ⟨[], append_nil _⟩
561+
theorem prefix_refl (l : List α) : l <+: l := ⟨[], append_nil _⟩
562+
@[simp] theorem prefix_rfl {l : List α} : l <+: l := prefix_refl l
562563

563-
@[simp] theorem suffix_refl {l : List α} : l <:+ l := ⟨[], rfl⟩
564+
theorem suffix_refl (l : List α) : l <:+ l := ⟨[], rfl⟩
565+
@[simp] theorem suffix_rfl {l : List α} : l <:+ l := suffix_refl l
564566

565-
@[simp] theorem infix_refl {l : List α} : l <:+: l := prefix_refl.isInfix
567+
theorem infix_refl (l : List α) : l <:+: l := prefix_rfl.isInfix
568+
@[simp] theorem infix_rfl {l : List α} : l <:+: l := infix_refl l
566569

567570
@[simp] theorem suffix_cons (a : α) : ∀ l, l <:+ a :: l := suffix_append [a]
568571

@@ -598,11 +601,11 @@ protected theorem IsSuffix.sublist (h : l₁ <:+ l₂) : l₁ <+ l₂ :=
598601
protected theorem IsSuffix.subset (hl : l₁ <:+ l₂) : l₁ ⊆ l₂ :=
599602
hl.sublist.subset
600603

601-
@[simp] theorem infix_nil : l <:+: [] ↔ l = [] := ⟨(sublist_nil.1 ·.sublist), (· ▸ infix_refl)⟩
604+
@[simp] theorem infix_nil : l <:+: [] ↔ l = [] := ⟨(sublist_nil.1 ·.sublist), (· ▸ infix_rfl)⟩
602605

603-
@[simp] theorem prefix_nil : l <+: [] ↔ l = [] := ⟨(sublist_nil.1 ·.sublist), (· ▸ prefix_refl)⟩
606+
@[simp] theorem prefix_nil : l <+: [] ↔ l = [] := ⟨(sublist_nil.1 ·.sublist), (· ▸ prefix_rfl)⟩
604607

605-
@[simp] theorem suffix_nil : l <:+ [] ↔ l = [] := ⟨(sublist_nil.1 ·.sublist), (· ▸ suffix_refl)⟩
608+
@[simp] theorem suffix_nil : l <:+ [] ↔ l = [] := ⟨(sublist_nil.1 ·.sublist), (· ▸ suffix_rfl)⟩
606609

607610
theorem eq_nil_of_infix_nil (h : l <:+: []) : l = [] := infix_nil.mp h
608611
theorem eq_nil_of_prefix_nil (h : l <+: []) : l = [] := prefix_nil.mp h

0 commit comments

Comments
 (0)