@@ -62,12 +62,8 @@ theorem of_comp {Y Z : C} {q n : ℕ} {φ : Y ⟶ X _⦋n + 1⦌} (v : HigherFac
62
62
63
63
theorem comp_Hσ_eq {Y : C} {n a q : ℕ} {φ : Y ⟶ X _⦋n + 1 ⦌} (v : HigherFacesVanish q φ)
64
64
(hnaq : n = a + q) :
65
- φ ≫ (Hσ q).f (n + 1 ) =
66
- -φ ≫ X.δ ⟨a + 1 , Nat.succ_lt_succ (Nat.lt_succ_iff.mpr (Nat.le.intro hnaq.symm))⟩ ≫
67
- X.σ ⟨a, Nat.lt_succ_iff.mpr (Nat.le.intro hnaq.symm)⟩ := by
68
- have hnaq_shift : ∀ d : ℕ, n + d = a + d + q := by
69
- intro d
70
- rw [add_assoc, add_comm d, ← add_assoc, hnaq]
65
+ φ ≫ (Hσ q).f (n + 1 ) = -φ ≫ X.δ ⟨a + 1 , by omega⟩ ≫ X.σ ⟨a, by omega⟩ := by
66
+ have hnaq_shift (d : ℕ) : n + d = a + d + q := by omega
71
67
rw [Hσ, Homotopy.nullHomotopicMap'_f (c_mk (n + 2 ) (n + 1 ) rfl) (c_mk (n + 1 ) n rfl),
72
68
hσ'_eq hnaq (c_mk (n + 1 ) n rfl), hσ'_eq (hnaq_shift 1 ) (c_mk (n + 2 ) (n + 1 ) rfl)]
73
69
simp only [AlternatingFaceMapComplex.obj_d_eq, eqToHom_refl, comp_id, comp_sum, sum_comp,
@@ -142,23 +138,16 @@ theorem comp_Hσ_eq_zero {Y : C} {n q : ℕ} {φ : Y ⟶ X _⦋n + 1⦌} (v : Hi
142
138
· simp only [hσ'_eq (show n + 1 = 0 + q by omega) (c_mk (n + 2 ) (n + 1 ) rfl), pow_zero,
143
139
Fin.mk_zero, one_zsmul, eqToHom_refl, comp_id, comp_sum,
144
140
AlternatingFaceMapComplex.obj_d_eq]
145
- rw [← Fin.sum_congr' _ (show 2 + (n + 1 ) = n + 1 + 2 by omega), Fin.sum_trunc]
146
- · simp only [Fin.sum_univ_castSucc, Fin.sum_univ_zero, zero_add, Fin.last, Fin.castLE_mk,
147
- Fin.cast_mk, Fin.castSucc_mk]
148
- simp only [Fin.mk_zero, Fin.val_zero, pow_zero, one_zsmul, Fin.mk_one, Fin.val_one, pow_one,
149
- neg_smul, comp_neg]
150
- rw [← Fin.castSucc_zero (n := n + 1 ), δ_comp_σ_self, ← Fin.succ_zero_eq_one, δ_comp_σ_succ,
141
+ -- All terms of the sum but the first two are zeros
142
+ rw [Fin.sum_univ_succ, Fin.sum_univ_succ, Fintype.sum_eq_zero, add_zero]
143
+ · simp only [Fin.val_zero, Fin.val_succ, Fin.coe_castSucc, zero_add, pow_zero, one_smul,
144
+ pow_one, neg_smul, comp_neg, ← Fin.castSucc_zero (n := n + 1 ), δ_comp_σ_self, δ_comp_σ_succ,
151
145
add_neg_cancel]
152
146
· intro j
153
- dsimp [Fin.cast, Fin.castLE, Fin.castLT]
154
147
rw [comp_zsmul, comp_zsmul, δ_comp_σ_of_gt', v.comp_δ_eq_zero_assoc, zero_comp, zsmul_zero]
155
- · simp only [Fin.lt_iff_val_lt_val]
156
- dsimp [Fin.succ]
157
- omega
158
- · intro h
159
- simp only [Fin.pred, Fin.subNat, Fin.ext_iff, Nat.succ_add_sub_one,
160
- Fin.val_zero, add_eq_zero, false_and, reduceCtorEq] at h
161
- · simp only [Fin.pred, Fin.subNat, Nat.pred_eq_sub_one, Nat.succ_add_sub_one]
148
+ · simp only [Fin.succ_lt_succ_iff, j.succ_pos]
149
+ · simp [Fin.succ_ne_zero]
150
+ · dsimp
162
151
omega
163
152
164
153
theorem induction {Y : C} {n q : ℕ} {φ : Y ⟶ X _⦋n + 1 ⦌} (v : HigherFacesVanish q φ) :
0 commit comments