Skip to content

error while using Recurrent block in lava-dl  #271

@franzhd

Description

@franzhd

Describe the bug
I'm trying to train recurrent neurons, but i'm not a
ble due to some errors in the code.
i'm posting down the code of the net itself.
To reproduce current behavior
Steps to reproduce the behavior:

  1. When I run this code (add code or minimum test case) ...
class Network(torch.nn.Module):
    def __init__(self, input, output, treshold, voltage_decay):
        super(Network, self).__init__()

        neuron_params = {
                'threshold'     : treshold,
                'current_decay' : 1,               
                'voltage_decay' : voltage_decay,
                'tau_grad'      : 1,
                'scale_grad'    : 1
            }
        neuron_params_drop = {**neuron_params, 'dropout' : slayer.neuron.Dropout(p=0.1),}
        
        self.blocks = torch.nn.ModuleList([

                slayer.block.cuba.Dense(neuron_params_drop, input, 128, weight_norm=True, delay=True),
                slayer.block.cuba.Recurrent(neuron_params_drop, 128,256,weight_norm=True,  delay=False),
                slayer.block.cuba.Recurrent(neuron_params_drop, 256,256, weight_norm=True, delay=False),
                slayer.block.cuba.Dense(neuron_params, 256, 128,  weight_norm=True, delay=True),
                slayer.block.cuba.Dense(neuron_params, 128, output)
            ])


    def forward(self, x):
        count = []
        event_cost = 0

            # forward computation is as simple as calling the blocks in a loop
        x = self.blocks[0](x)
        x = self.blocks[1](x)
        x = self.blocks[2](x)
        x = self.blocks[3](x)
        x = self.blocks[4](x)
            # if hasattr(block, 'neuron'):
            #     event_cost += event_rate_loss(x)
            #     count.append(torch.sum(torch.abs((x[..., 1:]) > 0).to(x.dtype)).item())

        return x #, event_cost , torch.FloatTensor(count).reshape((1, -1)).to(x.device)

    def grad_flow(self, path):
        # helps monitor the gradient flow
        grad = [b.synapse.grad_norm for b in self.blocks if hasattr(b, 'synapse')]

        plt.figure()
        plt.semilogy(grad)
        plt.savefig(path + 'gradFlow.png')
        plt.close()

        return grad
    

    def export_hdf5(self, filename):
        # network export to hdf5 format
        h = h5py.File(filename, 'w')
        layer = h.create_group('layer')
        for i, b in enumerate(self.blocks):
            b.export_hdf5(layer.create_group(f'{i}'))
    
  1. I get this error ...
Traceback (most recent call last):
  File "/root/lava-dl_experiment/src/experiment13.py", line 194, in <module>
    main()
  File "/root/lava-dl_experiment/src/experiment13.py", line 152, in main
    output = assistant.train(input.to(device), label)
  File "/opt/conda/lib/python3.10/site-packages/lava/lib/dl/slayer/utils/assistant.py", line 121, in train
    output = self.net(input)
  File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
    return forward_call(*args, **kwargs)
  File "/root/lava-dl_experiment/src/experiment13.py", line 56, in forward
    x = self.blocks[1](x)
  File "/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
    return forward_call(*args, **kwargs)
  File "/opt/conda/lib/python3.10/site-packages/lava/lib/dl/slayer/block/base.py", line 1476, in forward
    x = recurrent.custom_recurrent(z, self.neuron, self.recurrent_synapse)
  File "/opt/conda/lib/python3.10/site-packages/lava/lib/dl/slayer/utils/recurrent.py", line 42, in custom_recurrent
    return CustomRecurrent.apply(z, neuron, recurrent_mat)
  File "/opt/conda/lib/python3.10/site-packages/torch/autograd/function.py", line 506, in apply
    return super().apply(*args, **kwargs)  # type: ignore[misc]
  File "/opt/conda/lib/python3.10/site-packages/lava/lib/dl/slayer/utils/recurrent.py", line 64, in forward
    feedback = torch.matmul(spike[..., 0], recurrent_mat_T)
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! (when checking argument for argument mat2 in method wrapper_CUDA_mm)

Expected behavior

Screenshots
If applicable, add screenshots to help explain your problem. Remove section otherwise.

Environment (please complete the following information):

Additional context
Add any other context about the problem here. Remove section otherwise.

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions