You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi,
I’m new to here, with chatgpt, i’m trying to write an agent to help to analyze log files. When adding memory function, I got this error. Chatgpt cannot give me good answer, could somebody help? Thanks in advance.
(I asked same question in "https://forum.langchain.com/", just notice this forum looks more active, so I pasted here too)
My file is like:
`import os
import traceback
import re
import pandas as pd
from langchain_ollama import OllamaLLM
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.schema.document import Document
from langchain.agents import Tool, AgentExecutor, create_react_agent
from langchain.chains import RetrievalQA
from langchain.memory import ConversationBufferMemory
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import RunnablePassthrough
from langchain_core.messages import AIMessage, HumanMessage
docs = [Document(page_content="\n".join(f"{k}={v}" for k, v in row.items() if v.strip()), metadata={"row_index": i}) for i, row in df.iterrows()]
embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
db = FAISS.from_documents(docs, embedding_model)
=== 3. Setup LLM and Memory ===
llm = OllamaLLM(model=model_name, base_url=base_url)
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True,
input_key="input" #new required field in LangChain >0.1.0
)
=== 4. Shared cache to store last result row indexes ===
last_indexes = []
=== 5. Tool Helpers ===
def parse_keyword(q):
match = re.search(r"(?:how many|count)?\s*(\w+)(?:\s+logs?)?", q, re.IGNORECASE)
return match.group(1) if match else q.strip()
def get_row_indexes_by_keyword(keyword: str):
global last_indexes
matches = df[df.apply(lambda row: row.astype(str).str.contains(keyword, case=False).any(), axis=1)]
last_indexes = matches.index.tolist()
return_str = ", ".join(map(str, last_indexes)) if last_indexes else "No matching rows found"
print("return_str is "+return_str)
return return_str
def get_row_indexes_by_field(field: str, value: str):
global last_indexes
matches = df[df[field].astype(str).str.contains(value, case=False, na=False)]
last_indexes = matches.index.tolist()
return_str = ", ".join(map(str, last_indexes)) if last_indexes else "No matching rows found"
print("return_str is "+return_str)
return return_str
def print_rows_by_index(indexes: list[int], limit=5) -> str:
output = []
for idx in indexes[:limit]:
if 0 <= idx < len(df):
row = df.iloc[idx]
clean = row[row != ""]
output.append(f"\n--- Row {idx} ---\n" + clean.to_string())
return "\n".join(output) if output else "No rows to show."
=== 6. Tools ===
tools = [
Tool(
name="FindRowIndexesByKeyword",
func=lambda q: get_row_indexes_by_keyword(parse_keyword(q)),
description="Return a list of row indexes where any field contains the given keyword"
),
Tool(
name="FindRowIndexesByField",
func=lambda q: get_row_indexes_by_field(*re.search(r"(\w+)=['"]?(.+?)['"]?", q).groups()),
description="Return a list of row indexes where a specific field equals a value, e.g., subtype='ha'"
),
Tool(
name="PrintRowsByIndex",
func=lambda q: print_rows_by_index(last_indexes),
description="Print the rows found from the last search using saved row indexes"
)
]
#def format_log_to_messages(intermediate_steps):
"""Construct the scratchpad that lets the agent continue its thought process."""
#agent_scratchpad = format_log_to_messages([]) # Initialize with an empty list
agent_scratchpad = []
=== 7. Agent Setup ===
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful log analysis assistant.\n\n"
"You have access to the following tools:\n\n{tools}\n\n"
"Use them if they help answer the question.\n"
"Tools available: {tool_names}"),
("human", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
])
print("prompt is "+str(prompt))
agent = create_react_agent(llm=llm, tools=tools, prompt=prompt)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
memory=memory,
verbose=True,
handle_parsing_errors=True,
return_intermediate_steps=True,
agent_scratchpad_key="agent_scratchpad", # ? match placeholder
input_key="input", # ? match prompt
)
=== 8. Main Loop ===
print("\n?? You can now ask questions about the logs (type 'exit' to quit).")
while True:
query = input("\n?? Ask: ").strip()
if query.lower() == "exit":
break
if isinstance(agent_scratchpad, list):
print("agent_scratchpad is a list")
#result = agent_executor.invoke({"input": query})
try:
result = agent_executor.invoke({"input": query})
except Exception as e:
print(f"? Exception: {e}")
traceback.print_exc()
result = None
print("\n? Answer:\n", result["answer"])
When I run it, i got: (env) root@cenubu81:/env_test/my_codes/document_analyzer# python3 agent2.py /env_test/my_codes/document_analyzer/agent2.py:26: LangChainDeprecationWarning: The classHuggingFaceEmbeddings was deprecated in LangChain 0.2.2 and will be removed in 1.0. An updated version of the class exists in the :class:~langchain-huggingface package and should be used instead. To use it run pip install -U :class:~langchain-huggingfaceand import asfrom :class:`~langchain_huggingface import HuggingFaceEmbeddings``.
embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
/env_test/my_codes/document_analyzer/agent2.py:31: LangChainDeprecationWarning: Please see the migration guide at: https://python.langchain.com/docs/versions/migrating_memory/
memory = ConversationBufferMemory(
prompt is input_variables=['agent_scratchpad', 'input', 'tool_names', 'tools'] input_types={'agent_scratchpad': list[typing.Annotated[typing.Union[typing.Annotated[langchain_core.messages.ai.AIMessage, Tag(tag='ai')], typing.Annotated[langchain_core.messages.human.HumanMessage, Tag(tag='human')], typing.Annotated[langchain_core.messages.chat.ChatMessage, Tag(tag='chat')], typing.Annotated[langchain_core.messages.system.SystemMessage, Tag(tag='system')], typing.Annotated[langchain_core.messages.function.FunctionMessage, Tag(tag='function')], typing.Annotated[langchain_core.messages.tool.ToolMessage, Tag(tag='tool')], typing.Annotated[langchain_core.messages.ai.AIMessageChunk, Tag(tag='AIMessageChunk')], typing.Annotated[langchain_core.messages.human.HumanMessageChunk, Tag(tag='HumanMessageChunk')], typing.Annotated[langchain_core.messages.chat.ChatMessageChunk, Tag(tag='ChatMessageChunk')], typing.Annotated[langchain_core.messages.system.SystemMessageChunk, Tag(tag='SystemMessageChunk')], typing.Annotated[langchain_core.messages.function.FunctionMessageChunk, Tag(tag='FunctionMessageChunk')], typing.Annotated[langchain_core.messages.tool.ToolMessageChunk, Tag(tag='ToolMessageChunk')]], FieldInfo(annotation=NoneType, required=True, discriminator=Discriminator(discriminator=<function _get_type at 0x79b96f3b6b60>, custom_error_type=None, custom_error_message=None, custom_error_context=None))]]} partial_variables={} messages=[SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=['tool_names', 'tools'], input_types={}, partial_variables={}, template='You are a helpful log analysis assistant.\n\nYou have access to the following tools:\n\n{tools}\n\nUse them if they help answer the question.\nTools available: {tool_names}'), additional_kwargs={}), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['input'], input_types={}, partial_variables={}, template='{input}'), additional_kwargs={}), MessagesPlaceholder(variable_name='agent_scratchpad')]
?? You can now ask questions about the logs (type 'exit' to quit).
?? Ask: how many logs contain shutdown
agent_scratchpad is a list
Entering new AgentExecutor chain...
? Exception: variable agent_scratchpad should be a list of base messages, got of type <class 'str'>
Traceback (most recent call last):
File "/env_test/my_codes/document_analyzer/agent2.py", line 134, in
result = agent_executor.invoke({"input": query})
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/env/lib/python3.12/site-packages/langchain/chains/base.py", line 167, in invoke
raise e
File "/root/env/lib/python3.12/site-packages/langchain/chains/base.py", line 157, in invoke
self._call(inputs, run_manager=run_manager)
File "/root/env/lib/python3.12/site-packages/langchain/agents/agent.py", line 1620, in _call
next_step_output = self._take_next_step(
^^^^^^^^^^^^^^^^^^^^^
File "/root/env/lib/python3.12/site-packages/langchain/agents/agent.py", line 1326, in _take_next_step
[
File "/root/env/lib/python3.12/site-packages/langchain/agents/agent.py", line 1354, in _iter_next_step
output = self._action_agent.plan(
^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/env/lib/python3.12/site-packages/langchain/agents/agent.py", line 461, in plan
for chunk in self.runnable.stream(inputs, config={"callbacks": callbacks}):
File "/root/env/lib/python3.12/site-packages/langchain_core/runnables/base.py", line 3438, in stream
yield from self.transform(iter([input]), config, **kwargs)
File "/root/env/lib/python3.12/site-packages/langchain_core/runnables/base.py", line 3424, in transform
yield from self._transform_stream_with_config(
File "/root/env/lib/python3.12/site-packages/langchain_core/runnables/base.py", line 2215, in _transform_stream_with_config
chunk: Output = context.run(next, iterator)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/env/lib/python3.12/site-packages/langchain_core/runnables/base.py", line 3386, in _transform
yield from final_pipeline
File "/root/env/lib/python3.12/site-packages/langchain_core/runnables/base.py", line 1429, in transform
for ichunk in input:
File "/root/env/lib/python3.12/site-packages/langchain_core/runnables/base.py", line 5647, in transform
yield from self.bound.transform(
File "/root/env/lib/python3.12/site-packages/langchain_core/runnables/base.py", line 1429, in transform
for ichunk in input:
File "/root/env/lib/python3.12/site-packages/langchain_core/runnables/base.py", line 1447, in transform
yield from self.stream(final, config, **kwargs)
File "/root/env/lib/python3.12/site-packages/langchain_core/runnables/base.py", line 1014, in stream
yield self.invoke(input, config, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/env/lib/python3.12/site-packages/langchain_core/prompts/base.py", line 216, in invoke
return self._call_with_config(
^^^^^^^^^^^^^^^^^^^^^^^
File "/root/env/lib/python3.12/site-packages/langchain_core/runnables/base.py", line 1940, in _call_with_config
context.run(
File "/root/env/lib/python3.12/site-packages/langchain_core/runnables/config.py", line 428, in call_func_with_variable_args
return func(input, kwargs) # type: ignore[call-arg]
^^^^^^^^^^^^^^^^^^^^^
File "/root/env/lib/python3.12/site-packages/langchain_core/prompts/base.py", line 190, in _format_prompt_with_error_handling
return self.format_prompt(_inner_input)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/env/lib/python3.12/site-packages/langchain_core/prompts/chat.py", line 726, in format_prompt
messages = self.format_messages(**kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/env/lib/python3.12/site-packages/langchain_core/prompts/chat.py", line 1187, in format_messages
message = message_template.format_messages(**kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/env/lib/python3.12/site-packages/langchain_core/prompts/chat.py", line 183, in format_messages
raise ValueError(msg) # noqa: TRY004
^^^^^^^^^^^^^^^^^^^^^
ValueError: variable agent_scratchpad should be a list of base messages, got of type <class 'str'>
Traceback (most recent call last):
File "/env_test/my_codes/document_analyzer/agent2.py", line 139, in
print("\n? Answer:\n", result["answer"])
~~~~~~^^^^^^^^^^
TypeError: 'NoneType' object is not subscriptable
(env) root@cenubu81:/env_test/my_codes/document_analyzer#
`
Hey Hans, I feel your pain. Wrangling LangChain’s agent memory is like assembling IKEA furniture with missing screws.
From the traceback, here’s what’s going on:
ValueError: variable agent_scratchpad should be a list of base messages, got <class 'str'>
This happens because LangChain’s agents now expect agent_scratchpad to be a list of BaseMessage objects (like AIMessage, HumanMessage, etc.), not just a plain string.
In your tool definition or when setting up the memory chain, somewhere you’re probably passing something like this:
Also, double check that your memory object returns a list of messages — not a dict or plain string. Since you’re using ConversationBufferMemory, make sure it’s in return_messages=True mode (which you already did — good).
Bonus tip: try logging agent_kwargs["agent_scratchpad"] right before it crashes, just to confirm the type.
Hope this helps! Let me know if you want to cross-debug — I’m building something similar right now.
Now I removed the "memory", checked Tool to make sure it returns "list", however, I still got the same error. Getting crazy!!!
Now my code is like:
`root@cenubu81:/env_test/my_codes/document_analyzer# cat agent2.py
import os
import traceback
import re
import pandas as pd
from langchain_ollama import OllamaLLM
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.schema.document import Document
from langchain.agents import Tool, AgentExecutor, create_react_agent
from langchain.chains import RetrievalQA
from langchain.memory import ConversationBufferMemory
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import RunnablePassthrough
from langchain_core.messages import AIMessage, HumanMessage
docs = [Document(page_content="\n".join(f"{k}={v}" for k, v in row.items() if v.strip()), metadata={"row_index": i}) for i, row in df.iterrows()]
embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
db = FAISS.from_documents(docs, embedding_model)
=== 4. Shared cache to store last result row indexes ===
last_indexes = []
=== 5. Tool Helpers ===
def parse_keyword(q):
print("in parse_keyword")
match = re.search(r"(?:how many|count)?\s*(\w+)(?:\s+logs?)?", q, re.IGNORECASE)
return match.group(1) if match else q.strip()
def get_row_indexes_by_field(field: str, value: str) -> list[int]:
global last_indexes
print("in get_row_indexes_by_field")
if field not in df.columns:
last_indexes = []
return []
matches = df[df[field].astype(str) == value]
last_indexes = matches.index.tolist()
return last_indexes
=== 6. Tools ===
tools = [
Tool(
name="FindRowIndexesByKeyword",
func=lambda q: get_row_indexes_by_keyword(parse_keyword(q)),
description="Return a list of row indexes where any field contains the given keyword"
),
Tool(
name="FindRowIndexesByField",
func=lambda q: get_row_indexes_by_field(*re.search(r"(\w+)=['"]?(.+?)['"]?", q).groups()),
description="Return a list of row indexes where a specific field equals a value, e.g., subtype='ha'"
)
]
=== 7. Agent Setup ===
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful log analysis assistant.\n\n"
"You have access to the following tools:\n\n{tools}\n\n"
"Use them if they help answer the question.\n"
"Tools available: {tool_names}"),
("human", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad")
])
print("prompt is "+str(prompt))
agent = create_react_agent(llm=llm, tools=tools, prompt=prompt)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
handle_parsing_errors=True,
return_intermediate_steps=True,
)
=== 8. Main Loop ===
print("\n?? You can now ask questions about the logs (type 'exit' to quit).")
while True:
#query = input("\n?? Ask: ").strip()
query = "how many logs in the file"
if query.lower() == "exit":
break
try:
result = agent_executor.invoke({"input": query})
for action, observation in result["intermediate_steps"]:
print("Tool used:", action.tool)
print("Tool input:", action.tool_input)
print("Observation:", observation)
except Exception as e:
print(f"? Exception: {e}")
traceback.print_exc()
result = None
print("\n? Answer:\n", result["answer"])
reacted with thumbs up emoji reacted with thumbs down emoji reacted with laugh emoji reacted with hooray emoji reacted with confused emoji reacted with heart emoji reacted with rocket emoji reacted with eyes emoji
Uh oh!
There was an error while loading. Please reload this page.
-
Hi,
I’m new to here, with chatgpt, i’m trying to write an agent to help to analyze log files. When adding memory function, I got this error. Chatgpt cannot give me good answer, could somebody help? Thanks in advance.
(I asked same question in "https://forum.langchain.com/", just notice this forum looks more active, so I pasted here too)
My file is like:
`import os
import traceback
import re
import pandas as pd
from langchain_ollama import OllamaLLM
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.schema.document import Document
from langchain.agents import Tool, AgentExecutor, create_react_agent
from langchain.chains import RetrievalQA
from langchain.memory import ConversationBufferMemory
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import RunnablePassthrough
from langchain_core.messages import AIMessage, HumanMessage
=== CONFIGURATION ===
log_path = "/env_test/tftpboot/Book2.csv"
base_url = "http://10.59.19.3:11434"
model_name = "llama3"
=== 1. LOAD CSV LOG FILE ===
df = pd.read_csv(log_path, header=None).dropna(axis=1, how='all').fillna("").astype(str)
=== 2. Build FAISS Index ===
docs = [Document(page_content="\n".join(f"{k}={v}" for k, v in row.items() if v.strip()), metadata={"row_index": i}) for i, row in df.iterrows()]
embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
db = FAISS.from_documents(docs, embedding_model)
=== 3. Setup LLM and Memory ===
llm = OllamaLLM(model=model_name, base_url=base_url)
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True,
input_key="input" #new required field in LangChain >0.1.0
)
=== 4. Shared cache to store last result row indexes ===
last_indexes = []
=== 5. Tool Helpers ===
def parse_keyword(q):
match = re.search(r"(?:how many|count)?\s*(\w+)(?:\s+logs?)?", q, re.IGNORECASE)
return match.group(1) if match else q.strip()
def get_row_indexes_by_keyword(keyword: str):
global last_indexes
matches = df[df.apply(lambda row: row.astype(str).str.contains(keyword, case=False).any(), axis=1)]
last_indexes = matches.index.tolist()
return_str = ", ".join(map(str, last_indexes)) if last_indexes else "No matching rows found"
print("return_str is "+return_str)
return return_str
def get_row_indexes_by_field(field: str, value: str):
global last_indexes
matches = df[df[field].astype(str).str.contains(value, case=False, na=False)]
last_indexes = matches.index.tolist()
return_str = ", ".join(map(str, last_indexes)) if last_indexes else "No matching rows found"
print("return_str is "+return_str)
return return_str
def print_rows_by_index(indexes: list[int], limit=5) -> str:
output = []
for idx in indexes[:limit]:
if 0 <= idx < len(df):
row = df.iloc[idx]
clean = row[row != ""]
output.append(f"\n--- Row {idx} ---\n" + clean.to_string())
return "\n".join(output) if output else "No rows to show."
=== 6. Tools ===
tools = [
Tool(
name="FindRowIndexesByKeyword",
func=lambda q: get_row_indexes_by_keyword(parse_keyword(q)),
description="Return a list of row indexes where any field contains the given keyword"
),
Tool(
name="FindRowIndexesByField",
func=lambda q: get_row_indexes_by_field(*re.search(r"(\w+)=['"]?(.+?)['"]?", q).groups()),
description="Return a list of row indexes where a specific field equals a value, e.g., subtype='ha'"
),
Tool(
name="PrintRowsByIndex",
func=lambda q: print_rows_by_index(last_indexes),
description="Print the rows found from the last search using saved row indexes"
)
]
#def format_log_to_messages(intermediate_steps):
"""Construct the scratchpad that lets the agent continue its thought process."""
thoughts = []
for action, observation in intermediate_steps:
thoughts.append(AIMessage(content=action.log))
human_message = HumanMessage(content=f"Observation: {observation}")
thoughts.append(human_message)
return thoughts
Ensure agent_scratchpad is formatted correctly
#agent_scratchpad = format_log_to_messages([]) # Initialize with an empty list
agent_scratchpad = []
=== 7. Agent Setup ===
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful log analysis assistant.\n\n"
"You have access to the following tools:\n\n{tools}\n\n"
"Use them if they help answer the question.\n"
"Tools available: {tool_names}"),
("human", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
])
print("prompt is "+str(prompt))
agent = create_react_agent(llm=llm, tools=tools, prompt=prompt)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
memory=memory,
verbose=True,
handle_parsing_errors=True,
return_intermediate_steps=True,
agent_scratchpad_key="agent_scratchpad", # ? match placeholder
input_key="input", # ? match prompt
)
=== 8. Main Loop ===
print("\n?? You can now ask questions about the logs (type 'exit' to quit).")
while True:
query = input("\n?? Ask: ").strip()
if query.lower() == "exit":
break
if isinstance(agent_scratchpad, list):
print("agent_scratchpad is a list")
#result = agent_executor.invoke({"input": query})
try:
result = agent_executor.invoke({"input": query})
except Exception as e:
print(f"? Exception: {e}")
traceback.print_exc()
result = None
print("\n? Answer:\n", result["answer"])
root@cenubu81:/env_test/my_codes/document_analyzer#
`
When I run it, i got:
(env) root@cenubu81:/env_test/my_codes/document_analyzer# python3 agent2.py /env_test/my_codes/document_analyzer/agent2.py:26: LangChainDeprecationWarning: The class
HuggingFaceEmbeddingswas deprecated in LangChain 0.2.2 and will be removed in 1.0. An updated version of the class exists in the :class:
~langchain-huggingface package and should be used instead. To use it runpip install -U :class:
~langchain-huggingfaceand import as
from :class:`~langchain_huggingface import HuggingFaceEmbeddings``.embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
/env_test/my_codes/document_analyzer/agent2.py:31: LangChainDeprecationWarning: Please see the migration guide at: https://python.langchain.com/docs/versions/migrating_memory/
memory = ConversationBufferMemory(
prompt is input_variables=['agent_scratchpad', 'input', 'tool_names', 'tools'] input_types={'agent_scratchpad': list[typing.Annotated[typing.Union[typing.Annotated[langchain_core.messages.ai.AIMessage, Tag(tag='ai')], typing.Annotated[langchain_core.messages.human.HumanMessage, Tag(tag='human')], typing.Annotated[langchain_core.messages.chat.ChatMessage, Tag(tag='chat')], typing.Annotated[langchain_core.messages.system.SystemMessage, Tag(tag='system')], typing.Annotated[langchain_core.messages.function.FunctionMessage, Tag(tag='function')], typing.Annotated[langchain_core.messages.tool.ToolMessage, Tag(tag='tool')], typing.Annotated[langchain_core.messages.ai.AIMessageChunk, Tag(tag='AIMessageChunk')], typing.Annotated[langchain_core.messages.human.HumanMessageChunk, Tag(tag='HumanMessageChunk')], typing.Annotated[langchain_core.messages.chat.ChatMessageChunk, Tag(tag='ChatMessageChunk')], typing.Annotated[langchain_core.messages.system.SystemMessageChunk, Tag(tag='SystemMessageChunk')], typing.Annotated[langchain_core.messages.function.FunctionMessageChunk, Tag(tag='FunctionMessageChunk')], typing.Annotated[langchain_core.messages.tool.ToolMessageChunk, Tag(tag='ToolMessageChunk')]], FieldInfo(annotation=NoneType, required=True, discriminator=Discriminator(discriminator=<function _get_type at 0x79b96f3b6b60>, custom_error_type=None, custom_error_message=None, custom_error_context=None))]]} partial_variables={} messages=[SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=['tool_names', 'tools'], input_types={}, partial_variables={}, template='You are a helpful log analysis assistant.\n\nYou have access to the following tools:\n\n{tools}\n\nUse them if they help answer the question.\nTools available: {tool_names}'), additional_kwargs={}), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['input'], input_types={}, partial_variables={}, template='{input}'), additional_kwargs={}), MessagesPlaceholder(variable_name='agent_scratchpad')]
?? You can now ask questions about the logs (type 'exit' to quit).
?? Ask: how many logs contain shutdown
agent_scratchpad is a list
Thank you very much!!!
Hans
Beta Was this translation helpful? Give feedback.
All reactions