You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I'm following the tutorial here https://python.langchain.com/docs/integrations/document_loaders/figma/ for making an agent to write code from Figma design. I'm having trouble following the tutorial, as my Figma design is rather large, and the serialized data exceeded the token limit for the embedding.
Here's the console output after running the above sample code on my Figma design:
C:\Users\User\PycharmProjects\figma_json_coder\venv\Lib\site-packages\langchain\indexes\vectorstore.py:171: UserWarning: Using InMemoryVectorStore as the default vectorstore.This memory store won't persist data. You should explicitlyspecify a vectorstore when using VectorstoreIndexCreator
warnings.warn(
Traceback (most recent call last):
File "C:\Users\User\PycharmProjects\figma_json_coder\figma_test_scratch.py", line 96, in <module>
index = VectorstoreIndexCreator(embedding=embeddings).from_loaders([figma_loader])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\User\PycharmProjects\figma_json_coder\venv\Lib\site-packages\langchain\indexes\vectorstore.py", line 206, in from_loaders
return self.from_documents(docs)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\User\PycharmProjects\figma_json_coder\venv\Lib\site-packages\langchain\indexes\vectorstore.py", line 233, in from_documents
vectorstore = self.vectorstore_cls.from_documents(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\User\PycharmProjects\figma_json_coder\venv\Lib\site-packages\langchain_core\vectorstores\base.py", line 844, in from_documents
return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\User\PycharmProjects\figma_json_coder\venv\Lib\site-packages\langchain_core\vectorstores\in_memory.py", line 521, in from_texts
store.add_texts(texts=texts, metadatas=metadatas, **kwargs)
File "C:\Users\User\PycharmProjects\figma_json_coder\venv\Lib\site-packages\langchain_core\vectorstores\base.py", line 112, in add_texts
return self.add_documents(docs, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\User\PycharmProjects\figma_json_coder\venv\Lib\site-packages\langchain_core\vectorstores\in_memory.py", line 187, in add_documents
vectors = self.embedding.embed_documents(texts)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\User\PycharmProjects\figma_json_coder\venv\Lib\site-packages\langchain_openai\embeddings\base.py", line 588, in embed_documents
return self._get_len_safe_embeddings(texts, engine=engine)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\User\PycharmProjects\figma_json_coder\venv\Lib\site-packages\langchain_openai\embeddings\base.py", line 483, in _get_len_safe_embeddings
response = self.client.create(
^^^^^^^^^^^^^^^^^^^
File "C:\Users\User\PycharmProjects\figma_json_coder\venv\Lib\site-packages\openai\resources\embeddings.py", line 128, in create
return self._post(
^^^^^^^^^^^
File "C:\Users\User\PycharmProjects\figma_json_coder\venv\Lib\site-packages\openai\_base_client.py", line 1242, in post
return cast(ResponseT, self.request(cast_to, opts, stream=stream, stream_cls=stream_cls))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\User\PycharmProjects\figma_json_coder\venv\Lib\site-packages\openai\_base_client.py", line 919, in request
return self._request(
^^^^^^^^^^^^^^
File "C:\Users\User\PycharmProjects\figma_json_coder\venv\Lib\site-packages\openai\_base_client.py", line 1023, in _request
raise self._make_status_error_from_response(err.response) from None
openai.BadRequestError: Error code: 400 - {'error': {'message': 'Requested 374225 tokens, max 300000 tokens per request', 'type': 'max_tokens_per_request', 'param': None, 'code': 'max_tokens_per_request'}}
Process finished with exit code 1
I've been trying to work around it by building my own VectorStore indexer builder, however it seems like FigmaFileLoader is not returning a JSON formatted output.
reacted with thumbs up emoji reacted with thumbs down emoji reacted with laugh emoji reacted with hooray emoji reacted with confused emoji reacted with heart emoji reacted with rocket emoji reacted with eyes emoji
Uh oh!
There was an error while loading. Please reload this page.
-
Checked other resources
Commit to Help
Example Code
Description
I'm following the tutorial here https://python.langchain.com/docs/integrations/document_loaders/figma/ for making an agent to write code from Figma design. I'm having trouble following the tutorial, as my Figma design is rather large, and the serialized data exceeded the token limit for the embedding.
Here's the console output after running the above sample code on my Figma design:
I've been trying to work around it by building my own VectorStore indexer builder, however it seems like FigmaFileLoader is not returning a JSON formatted output.
gives me a string of text that is not in JSON format, like so
I'd like to know
System Info
langchain = 0.3.20
langchain_community = 0.3.19
Platform: Windows 11
Python 3.11.0
Beta Was this translation helpful? Give feedback.
All reactions