Replies: 2 comments 12 replies
-
Hello, @rvasa779! I'm here to assist you. If you need help with bugs, questions, or becoming a contributor, I'm the bot for the job. The To resolve this issue, you need to ensure that the
Here is an example of how you might modify the def _response_to_result(response):
result = {}
for candidate in response.candidates:
generation_info = {}
if hasattr(candidate.finish_reason, 'name'):
generation_info["finish_reason"] = candidate.finish_reason.name
else:
generation_info["finish_reason"] = str(candidate.finish_reason)
result["generation_info"] = generation_info
return result This modification ensures that if Additionally, ensure that the Here is the relevant part of the code that needs to be checked and possibly corrected: def img_prompt_func(data_dict, num_images=2):
messages = []
if data_dict["context"]["images"]:
for image in data_dict["context"]["images"][:num_images]:
image_message = {
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image}"},
}
messages.append(image_message)
text_message = {
"type": "text",
"text": (
"You are an analyst tasked with answering questions about visual content.\n"
"You will be given a set of image(s) from a slide deck / presentation.\n"
"Use this information to answer the user question. \n"
f"User-provided question: {data_dict['question']}\n\n"
),
}
messages.append(text_message)
return [HumanMessage(content=messages)] Ensure that the data_dict = {
"context": {
"images": ["base64_encoded_image_string1", "base64_encoded_image_string2"]
},
"question": "What is shown in these images?"
} If |
Beta Was this translation helpful? Give feedback.
-
transferring to langchain-google repo for visibility, cc @lkuligin |
Beta Was this translation helpful? Give feedback.
Uh oh!
There was an error while loading. Please reload this page.
-
Checked other resources
Commit to Help
Example Code
Description
I am using ChatGoogleGenerativeAI along with AzureOpenAI in configurable mode.
I have written a simple fastapi to write a joke on user given topic. When I run the above code configuring my "llm" parameter as azure it works fine. However, when I run the same code with "llm" parameter as gemini the code fails with the below error:
[2024-06-14T05:30:47.913Z] System.Private.CoreLib: Exception while executing function: Functions.HttpTrigger1. System.Private.CoreLib: Result: Failure Exception: AttributeError: 'int' object has no attribute 'name' Stack: File "C:\Program Files\Microsoft\Azure Functions Core Tools\workers\python\3.9\WINDOWS\X64\azure_functions_worker\dispatcher.py", line 479, in _handle__invocation_request call_result = await self._loop.run_in_executor( File "C:\Users\Digital\AppData\Local\Programs\Python\Python39\lib\concurrent\futures\thread.py", line 52, in run result = self.fn(*self.args, **self.kwargs) File "C:\Program Files\Microsoft\Azure Functions Core Tools\workers\python\3.9\WINDOWS\X64\azure_functions_worker\dispatcher.py", line 752, in _run_sync_func return ExtensionManager.get_sync_invocation_wrapper(context, File "C:\Program Files\Microsoft\Azure Functions Core Tools\workers\python\3.9\WINDOWS\X64\azure_functions_worker\extension.py", line 215, in _raw_invocation_wrapper result = function(**args) File "<code_path>\egg-gemini\HttpTrigger1\__init__.py", line 19, in main return func.AsgiMiddleware(app).handle(req, context) File "C:\Program Files\Microsoft\Azure Functions Core Tools\workers\python\3.9\WINDOWS\X64\azure\functions\_http_asgi.py", line 172, in handle return self._handle(req, context) File "C:\Program Files\Microsoft\Azure Functions Core Tools\workers\python\3.9\WINDOWS\X64\azure\functions\_http_asgi.py", line 177, in _handle asgi_response = asyncio.run( File "C:\Users\Digital\AppData\Local\Programs\Python\Python39\lib\asyncio\runners.py", line 44, in run return loop.run_until_complete(main) File "C:\Users\Digital\AppData\Local\Programs\Python\Python39\lib\asyncio\base_events.py", line 642, in run_until_complete return future.result() File "C:\Program Files\Microsoft\Azure Functions Core Tools\workers\python\3.9\WINDOWS\X64\azure\functions\_http_asgi.py", line 80, in from_app await app(scope, res._receive, res._send) File "<code_path>\egg-gemini\.venv\lib\site-packages\fastapi\applications.py", line 1054, in __call__ await super().__call__(scope, receive, send) File "<code_path>\egg-gemini\.venv\lib\site-packages\starlette\applications.py", line 123, in __call__ await self.middleware_stack(scope, receive, send) File "<code_path>\egg-gemini\.venv\lib\site-packages\starlette\middleware\errors.py", line 186, in __call__ raise exc File "<code_path>\egg-gemini\.venv\lib\site-packages\starlette\middleware\errors.py", line 164, in __call__ await self.app(scope, receive, _send) File "<code_path>\egg-gemini\.venv\lib\site-packages\starlette\middleware\cors.py", line 85, in __call__ await self.app(scope, receive, send) File "<code_path>\egg-gemini\.venv\lib\site-packages\starlette\middleware\exceptions.py", line 65, in __call__ await wrap_app_handling_exceptions(self.app, conn)(scope, receive, send) File "<code_path>\egg-gemini\.venv\lib\site-packages\starlette\_exception_handler.py", line 64, in wrapped_app raise exc File "<code_path>\egg-gemini\.venv\lib\site-packages\starlette\_exception_handler.py", line 53, in wrapped_app await app(scope, receive, sender) File "<code_path>\egg-gemini\.venv\lib\site-packages\starlette\routing.py", line 756, in __call__ await self.middleware_stack(scope, receive, send) File "<code_path>\egg-gemini\.venv\lib\site-packages\starlette\routing.py", line 776, in app await route.handle(scope, receive, send) File "<code_path>\egg-gemini\.venv\lib\site-packages\starlette\routing.py", line 297, in handle await self.app(scope, receive, send) File "<code_path>\egg-gemini\.venv\lib\site-packages\starlette\routing.py", line 77, in app await wrap_app_handling_exceptions(app, request)(scope, receive, send) File "<code_path>\egg-gemini\.venv\lib\site-packages\starlette\_exception_handler.py", line 64, in wrapped_app raise exc File "<code_path>\egg-gemini\.venv\lib\site-packages\starlette\_exception_handler.py", line 53, in wrapped_app await app(scope, receive, sender) File "<code_path>\egg-gemini\.venv\lib\site-packages\starlette\routing.py", line 72, in app response = await func(request) File "<code_path>\egg-gemini\.venv\lib\site-packages\fastapi\routing.py", line 278, in app raw_response = await run_endpoint_function( File "<code_path>\egg-gemini\.venv\lib\site-packages\fastapi\routing.py", line 191, in run_endpoint_function return await dependant.call(**values) File "<code_path>\egg-gemini\src\__init__.py", line 100, in run_agent return chain.with_config(configurable={"llm": "gemini"}).invoke({'input':topic}) File "<code_path>\egg-gemini\.venv\lib\site-packages\langchain_core\runnables\base.py", line 4573, in invoke return self.bound.invoke( File "<code_path>\egg-gemini\.venv\lib\site-packages\langchain_core\runnables\base.py", line 2504, in invoke input = step.invoke(input, config) File "<code_path>\egg-gemini\.venv\lib\site-packages\langchain_core\runnables\configurable.py", line 117, in invoke return runnable.invoke(input, config, **kwargs) File "<code_path>\egg-gemini\.venv\lib\site-packages\langchain_core\language_models\chat_models.py", line 170, in invoke self.generate_prompt( File "<code_path>\egg-gemini\.venv\lib\site-packages\langchain_core\language_models\chat_models.py", line 599, in generate_prompt return self.generate(prompt_messages, stop=stop, callbacks=callbacks, **kwargs) File "<code_path>\egg-gemini\.venv\lib\site-packages\langchain_core\language_models\chat_models.py", line 456, in generate raise e File "<code_path>\egg-gemini\.venv\lib\site-packages\langchain_core\language_models\chat_models.py", line 446, in generate self._generate_with_cache( File "<code_path>\egg-gemini\.venv\lib\site-packages\langchain_core\language_models\chat_models.py", line 671, in _generate_with_cache result = self._generate( File "<code_path>\egg-gemini\.venv\lib\site-packages\langchain_google_genai\chat_models.py", line 766, in _generate return _response_to_result(response) File "<code_path>\egg-gemini\.venv\lib\site-packages\langchain_google_genai\chat_models.py", line 551, in _response_to_result generation_info["finish_reason"] = candidate.finish_reason.name
Attached is my requirement.txt file too
requirements.txt
System Info
System Information
Package Information
Packages not installed (Not Necessarily a Problem)
The following packages were not found:
Beta Was this translation helpful? Give feedback.
All reactions