Skip to content

Commit a6211a7

Browse files
committed
[Example] Add MCTS example
ghstack-source-id: 4cf2a16 Pull Request resolved: pytorch#2796
1 parent a31dca3 commit a6211a7

File tree

3 files changed

+244
-2
lines changed

3 files changed

+244
-2
lines changed

examples/trees/mcts.py

Lines changed: 232 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,232 @@
1+
# Copyright (c) Meta Platforms, Inc. and affiliates.
2+
#
3+
# This source code is licensed under the MIT license found in the
4+
# LICENSE file in the root directory of this source tree.
5+
6+
import time
7+
8+
import torch
9+
import torchrl
10+
import torchrl.envs
11+
from tensordict import TensorDict
12+
13+
from torchrl.data.map import (MCTSForest, Tree)
14+
from tensordict import TensorDictBase
15+
from torchrl.envs import EnvBase
16+
17+
start_time = time.time()
18+
19+
pgn_or_fen = "fen"
20+
mask_actions = True
21+
22+
env = torchrl.envs.ChessEnv(
23+
include_pgn=False,
24+
include_fen=True,
25+
include_hash=True,
26+
include_hash_inv=True,
27+
include_san=True,
28+
stateful=True,
29+
mask_actions=mask_actions,
30+
)
31+
32+
class TransformReward:
33+
def __init__(self):
34+
self.first_turn = None
35+
36+
def __call__(self, td):
37+
if self.first_turn is None and "turn" in td:
38+
self.first_turn = td["turn"]
39+
print(f'first turn: {self.first_turn}')
40+
41+
if "reward" not in td:
42+
return td
43+
reward = td["reward"]
44+
if reward == 0.5:
45+
reward = 0
46+
#elif reward == 1 and td["turn"] == env.lib.WHITE:
47+
elif reward == 1 and td["turn"] == self.first_turn:
48+
reward = -reward
49+
50+
td["reward"] = reward
51+
return td
52+
53+
def reset(self, td):
54+
self.first_turn = None
55+
56+
57+
# ChessEnv sets the reward to 0.5 for a draw and 1 for a win for either player.
58+
# Need to transform the reward to be:
59+
# white win = 1
60+
# draw = 0
61+
# black win = -1
62+
env = env.append_transform(TransformReward())
63+
64+
forest = torchrl.data.MCTSForest()
65+
forest.reward_keys = env.reward_keys
66+
forest.done_keys = env.done_keys
67+
forest.action_keys = env.action_keys
68+
69+
if mask_actions:
70+
forest.observation_keys = [f"{pgn_or_fen}_hash", "turn", "action_mask"]
71+
else:
72+
forest.observation_keys = [f"{pgn_or_fen}_hash", "turn"]
73+
74+
C = 2.0**0.5
75+
76+
77+
def traversal_priority_UCB1(tree):
78+
subtree = tree.subtree
79+
visits = subtree.visits
80+
reward_sum = subtree.wins
81+
82+
# If it's black's turn, flip the reward, since black wants to
83+
# optimize for the lowest reward, not highest.
84+
if not subtree.rollout[0, 0]["turn"]:
85+
reward_sum = -reward_sum
86+
87+
parent_visits = tree.visits
88+
reward_sum = reward_sum.squeeze(-1)
89+
priority = (reward_sum + C * torch.sqrt(torch.log(parent_visits))) / visits
90+
priority[visits == 0] = float("inf")
91+
return priority
92+
93+
94+
def _traverse_MCTS_one_step(forest, tree, env, max_rollout_steps):
95+
done = False
96+
trees_visited = [tree]
97+
98+
while not done:
99+
if tree.subtree is None:
100+
td_tree = tree.rollout[-1]["next"].clone()
101+
102+
if (tree.visits > 0 or tree.parent is None) and not td_tree["done"]:
103+
actions = env.all_actions(td_tree)
104+
subtrees = []
105+
106+
for action in actions:
107+
td = env.step(env.reset(td_tree).update(action))
108+
new_node = torchrl.data.Tree(
109+
rollout=td.unsqueeze(0),
110+
node_data=td["next"].select(*forest.node_map.in_keys),
111+
count=torch.tensor(0),
112+
wins=torch.zeros_like(td["next", env.reward_key]),
113+
)
114+
subtrees.append(new_node)
115+
116+
# NOTE: This whole script runs about 2x faster with lazy stack
117+
# versus eager stack.
118+
tree.subtree = TensorDict.lazy_stack(subtrees)
119+
chosen_idx = torch.randint(0, len(subtrees), ()).item()
120+
rollout_state = subtrees[chosen_idx].rollout[-1]["next"]
121+
122+
else:
123+
rollout_state = td_tree
124+
125+
if rollout_state["done"]:
126+
rollout_reward = rollout_state[env.reward_key]
127+
else:
128+
rollout = env.rollout(
129+
max_steps=max_rollout_steps,
130+
tensordict=rollout_state,
131+
)
132+
rollout_reward = rollout[-1]["next", env.reward_key]
133+
done = True
134+
135+
else:
136+
priorities = traversal_priority_UCB1(tree)
137+
chosen_idx = torch.argmax(priorities).item()
138+
tree = tree.subtree[chosen_idx]
139+
trees_visited.append(tree)
140+
141+
for tree in trees_visited:
142+
tree.visits += 1
143+
tree.wins += rollout_reward
144+
145+
146+
def MCTS(
147+
forest: MCTSForest,
148+
root: TensorDictBase,
149+
env: EnvBase,
150+
num_steps: int,
151+
max_rollout_steps: int | None = None
152+
) -> Tree:
153+
"""Performs Monte-Carlo tree search in an environment.
154+
155+
Args:
156+
forest (MCTSForest): Forest of the tree to update. If the tree does not
157+
exist yet, it is added.
158+
root (TensorDict): The root step of the tree to update.
159+
env (EnvBase): Environment to performs actions in.
160+
num_steps (int): Number of iterations to traverse.
161+
max_rollout_steps (int): Maximum number of steps for each rollout.
162+
"""
163+
if root not in forest:
164+
for action in env.all_actions(root):
165+
td = env.step(env.reset(root.clone()).update(action))
166+
forest.extend(td.unsqueeze(0))
167+
168+
tree = forest.get_tree(root)
169+
tree.wins = torch.zeros_like(td["next", env.reward_key])
170+
for subtree in tree.subtree:
171+
subtree.wins = torch.zeros_like(td["next", env.reward_key])
172+
173+
for _ in range(num_steps):
174+
_traverse_MCTS_one_step(forest, tree, env, max_rollout_steps)
175+
176+
return tree
177+
178+
179+
def tree_format_fn(tree):
180+
td = tree.rollout[-1]["next"]
181+
return [
182+
td["san"],
183+
td[pgn_or_fen].split("\n")[-1],
184+
tree.wins,
185+
tree.visits,
186+
]
187+
188+
189+
def get_best_move(fen, mcts_steps, rollout_steps):
190+
root = env.reset(TensorDict({"fen": fen}))
191+
tree = MCTS(forest, root, env, mcts_steps, rollout_steps)
192+
moves = []
193+
194+
for subtree in tree.subtree:
195+
san = subtree.rollout[0]["next", "san"]
196+
reward_sum = subtree.wins
197+
visits = subtree.visits
198+
value_avg = (reward_sum / visits).item()
199+
200+
if not subtree.rollout[0]["turn"]:
201+
value_avg = -value_avg
202+
203+
moves.append((value_avg, san))
204+
205+
moves = sorted(moves, key=lambda x: -x[0])
206+
207+
#print(tree.to_string(tree_format_fn))
208+
209+
print("------------------")
210+
for value_avg, san in moves:
211+
print(f" {value_avg:0.02f} {san}")
212+
print("------------------")
213+
214+
return moves[0][1]
215+
216+
217+
# White has M1, best move Rd8#. Any other moves lose to M2 or M1.
218+
fen0 = "7k/6pp/7p/7K/8/8/6q1/3R4 w - - 0 1"
219+
assert get_best_move(fen0, 100, 10) == "Rd8#"
220+
221+
# Black has M1, best move Qg6#. Other moves give rough equality or worse.
222+
fen1 = "6qk/2R4p/7K/8/8/8/8/4R3 b - - 1 1"
223+
assert get_best_move(fen1, 100, 10) == "Qg6#"
224+
225+
# White has M2, best move Rxg8+. Any other move loses.
226+
fen2 = "2R3qk/5p1p/7K/8/8/8/5r2/2R5 w - - 0 1"
227+
assert get_best_move(fen2, 1000, 10) == "Rxg8+"
228+
229+
end_time = time.time()
230+
total_time = end_time - start_time
231+
232+
print(f"Took {total_time} s")

torchrl/data/map/tree.py

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1363,6 +1363,11 @@ def valid_paths(cls, tree: Tree):
13631363
def __len__(self):
13641364
return len(self.data_map)
13651365

1366+
def __contains__(self, root: TensorDictBase):
1367+
if self.node_map is None:
1368+
return False
1369+
return root.select(*self.node_map.in_keys) in self.node_map
1370+
13661371
def to_string(self, td_root, node_format_fn=lambda tree: tree.node_data.to_dict()):
13671372
"""Generates a string representation of a tree in the forest.
13681373

torchrl/envs/custom/chess.py

Lines changed: 7 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -222,12 +222,15 @@ def lib(cls):
222222
return chess
223223

224224
_san_moves = []
225+
_san_move_to_index_map = {}
225226

226227
@_classproperty
227228
def san_moves(cls):
228229
if not cls._san_moves:
229230
with open(pathlib.Path(__file__).parent / "san_moves.txt", "r+") as f:
230231
cls._san_moves.extend(f.read().split("\n"))
232+
for idx, san_move in enumerate(cls._san_moves):
233+
cls._san_move_to_index_map[san_move] = idx
231234
return cls._san_moves
232235

233236
def _legal_moves_to_index(
@@ -255,7 +258,7 @@ def _legal_moves_to_index(
255258
board = self.board
256259

257260
indices = torch.tensor(
258-
[self._san_moves.index(board.san(m)) for m in board.legal_moves],
261+
[self._san_move_to_index_map[board.san(m)] for m in board.legal_moves],
259262
dtype=torch.int64,
260263
)
261264
mask = None
@@ -409,7 +412,9 @@ def _reset(self, tensordict=None):
409412
if move is None:
410413
dest.set("san", "<start>")
411414
else:
412-
dest.set("san", self.board.san(move))
415+
prev_board = self.board.copy()
416+
prev_board.pop()
417+
dest.set("san", prev_board.san(move))
413418
if self.include_fen:
414419
dest.set("fen", fen)
415420
if self.include_pgn:

0 commit comments

Comments
 (0)