|
| 1 | +import numpy as np |
| 2 | + |
| 3 | +from keras.src import backend |
| 4 | +from keras.src import ops |
| 5 | +from keras.src import testing |
| 6 | +from keras.src.layers import Dense |
| 7 | +from keras.src.layers import Embedding |
| 8 | +from keras.src.optimizers.muon import Muon |
| 9 | + |
| 10 | + |
| 11 | +class MuonTest(testing.TestCase): |
| 12 | + def test_config(self): |
| 13 | + optimizer = Muon( |
| 14 | + learning_rate=0.5, |
| 15 | + epsilon=1e-5, |
| 16 | + ) |
| 17 | + self.run_class_serialization_test(optimizer) |
| 18 | + |
| 19 | + def test_Newton_Schulz(self): |
| 20 | + optimizer = Muon() |
| 21 | + tensor_input = ops.array([[0.2499, 0.9105], [0.2655, 0.8824]]) |
| 22 | + except_output = ops.array([[-0.4422, 0.6457], [0.7285, 0.2968]]) |
| 23 | + output = optimizer.zeropower_via_newtonschulz5(tensor_input, 5) |
| 24 | + self.assertAllClose(output, except_output, rtol=1e-3, atol=1e-3) |
| 25 | + |
| 26 | + def test_adamw_single_step(self): |
| 27 | + optimizer = Muon() |
| 28 | + grads = ops.array([1.0, 6.0, 7.0, 2.0]) |
| 29 | + vars = backend.Variable([1.0, 2.0, 3.0, 4.0], name="test_vars") |
| 30 | + optimizer.build([vars]) |
| 31 | + optimizer._adamw_update_step(grads, vars, 0.5) |
| 32 | + self.assertAllClose(vars, [0.5, 1.5, 2.5, 3.5], rtol=1e-4, atol=1e-4) |
| 33 | + |
| 34 | + def test_should_use_adamw(self): |
| 35 | + vars = backend.Variable([[1.0, 2.0], [3.0, 4.0]]) |
| 36 | + optimizer = Muon(exclude_layers=["var"]) |
| 37 | + self.assertAllClose( |
| 38 | + True, |
| 39 | + optimizer._should_use_adamw(vars), |
| 40 | + ) |
| 41 | + embeding = Embedding(2, 2) |
| 42 | + embeding.build() |
| 43 | + self.assertAllClose( |
| 44 | + True, |
| 45 | + optimizer._should_use_adamw(embeding.weights[0]), |
| 46 | + ) |
| 47 | + vars = backend.Variable([[1.0, 2.0], [3.0, 4.0]]) |
| 48 | + optimizer = Muon() |
| 49 | + self.assertAllClose( |
| 50 | + False, |
| 51 | + optimizer._should_use_adamw(vars), |
| 52 | + ) |
| 53 | + dense = Dense(2) |
| 54 | + dense.build([None, 2]) |
| 55 | + self.assertAllClose( |
| 56 | + False, |
| 57 | + optimizer._should_use_adamw(dense.weights[0]), |
| 58 | + ) |
| 59 | + |
| 60 | + def test_muon_single_step(self): |
| 61 | + optimizer = Muon( |
| 62 | + learning_rate=0.5, |
| 63 | + weight_decay=0, |
| 64 | + ) |
| 65 | + grads = ops.array([[1.0, 6.0], [7.0, 2.0]]) |
| 66 | + vars = backend.Variable([[1.0, 2.0], [3.0, 4.0]]) |
| 67 | + optimizer.build([vars]) |
| 68 | + optimizer._muon_update_step(grads, vars, 0.5) |
| 69 | + self.assertAllClose( |
| 70 | + vars, [[1.13, 1.51], [2.57, 4.06]], rtol=1e-2, atol=1e-2 |
| 71 | + ) |
| 72 | + |
| 73 | + def test_clip_norm(self): |
| 74 | + optimizer = Muon(clipnorm=1) |
| 75 | + grad = [np.array([100.0, 100.0])] |
| 76 | + clipped_grad = optimizer._clip_gradients(grad) |
| 77 | + self.assertAllClose(clipped_grad[0], [2**0.5 / 2, 2**0.5 / 2]) |
| 78 | + |
| 79 | + def test_clip_value(self): |
| 80 | + optimizer = Muon(clipvalue=1) |
| 81 | + grad = [np.array([100.0, 100.0])] |
| 82 | + clipped_grad = optimizer._clip_gradients(grad) |
| 83 | + self.assertAllClose(clipped_grad[0], [1.0, 1.0]) |
0 commit comments