|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | + |
| 3 | +import numpy as np |
| 4 | + |
| 5 | +from keras import backend as K |
| 6 | +from keras.engine import InputSpec |
| 7 | +from keras.initializers import RandomUniform |
| 8 | +from keras.layers import Wrapper |
| 9 | + |
| 10 | + |
| 11 | +class ConcreteDropout(Wrapper): |
| 12 | + """A wrapper automating the dropout rate choice |
| 13 | + through the 'Concrete Dropout' technique. |
| 14 | +
|
| 15 | + # Example |
| 16 | +
|
| 17 | + ```python |
| 18 | + # as first layer in a sequential model: |
| 19 | + model = Sequential() |
| 20 | + model.add(ConcreteDropout(Dense(8), input_shape=(16)), n_data=5000) |
| 21 | + # now model.output_shape == (None, 8) |
| 22 | + # subsequent layers: no need for input shape |
| 23 | + model.add(ConcreteDropout(Dense(32), n_data=500)) |
| 24 | + # now model.output_shape == (None, 32) |
| 25 | +
|
| 26 | + # Note that the current implementation supports Conv2D Layer as well. |
| 27 | + ``` |
| 28 | +
|
| 29 | + # Arguments |
| 30 | + layer: The to be wrapped layer. |
| 31 | + n_data: int. Length of the dataset. |
| 32 | + length_scale: float. Prior lengthscale. |
| 33 | + model_precision: float. Model precision parameter is `1` for classification. |
| 34 | + Also known as inverse observation noise. |
| 35 | + prob_init: Tuple[float, float]. |
| 36 | + Probability lower / upper bounds of dropout rate initialization. |
| 37 | + temp: float. Temperature. Not used to be optimized. |
| 38 | + seed: Seed for random probability sampling. |
| 39 | +
|
| 40 | + # References |
| 41 | + - [Concrete Dropout](https://arxiv.org/pdf/1705.07832.pdf) |
| 42 | + """ |
| 43 | + |
| 44 | + def __init__(self, |
| 45 | + layer, |
| 46 | + n_data, |
| 47 | + length_scale=2e-2, |
| 48 | + model_precision=1, |
| 49 | + prob_init=(0.1, 0.5), |
| 50 | + temp=0.1, |
| 51 | + seed=None, |
| 52 | + **kwargs): |
| 53 | + assert 'kernel_regularizer' not in kwargs |
| 54 | + super(ConcreteDropout, self).__init__(layer, **kwargs) |
| 55 | + self.weight_regularizer = length_scale**2 / (model_precision * n_data) |
| 56 | + self.dropout_regularizer = 2 / (model_precision * n_data) |
| 57 | + self.prob_init = tuple(np.log(prob_init)) |
| 58 | + self.temp = temp |
| 59 | + self.seed = seed |
| 60 | + |
| 61 | + self.supports_masking = True |
| 62 | + self.p_logit = None |
| 63 | + self.p = None |
| 64 | + |
| 65 | + def _concrete_dropout(self, inputs, layer_type): |
| 66 | + """Applies concrete dropout. |
| 67 | + Used at training time (gradients can be propagated) |
| 68 | +
|
| 69 | + # Arguments |
| 70 | + inputs: Input. |
| 71 | + layer_type: str. Either 'dense' or 'conv2d'. |
| 72 | + # Returns |
| 73 | + A tensor with the same shape as inputs and dropout applied. |
| 74 | + """ |
| 75 | + eps = K.cast_to_floatx(K.epsilon()) |
| 76 | + |
| 77 | + noise_shape = K.shape(inputs) |
| 78 | + if layer_type == 'conv2d': |
| 79 | + if K.image_data_format() == 'channels_first': |
| 80 | + noise_shape = (noise_shape[0], noise_shape[1], 1, 1) |
| 81 | + else: |
| 82 | + noise_shape = (noise_shape[0], 1, 1, noise_shape[3]) |
| 83 | + unif_noise = K.random_uniform(shape=noise_shape, |
| 84 | + seed=self.seed, |
| 85 | + dtype=inputs.dtype) |
| 86 | + drop_prob = ( |
| 87 | + K.log(self.p + eps) |
| 88 | + - K.log(1. - self.p + eps) |
| 89 | + + K.log(unif_noise + eps) |
| 90 | + - K.log(1. - unif_noise + eps) |
| 91 | + ) |
| 92 | + drop_prob = K.sigmoid(drop_prob / self.temp) |
| 93 | + |
| 94 | + random_tensor = 1. - drop_prob |
| 95 | + retain_prob = 1. - self.p |
| 96 | + inputs *= random_tensor |
| 97 | + inputs /= retain_prob |
| 98 | + |
| 99 | + return inputs |
| 100 | + |
| 101 | + def build(self, input_shape=None): |
| 102 | + if len(input_shape) == 2: # Dense_layer |
| 103 | + input_dim = np.prod(input_shape[-1]) # we drop only last dim |
| 104 | + elif len(input_shape) == 4: # Conv_layer |
| 105 | + input_dim = (input_shape[1] |
| 106 | + if K.image_data_format() == 'channels_first' |
| 107 | + else input_shape[3]) # we drop only channels |
| 108 | + else: |
| 109 | + raise ValueError( |
| 110 | + 'concrete_dropout currenty supports only Dense/Conv2D layers') |
| 111 | + |
| 112 | + self.input_spec = InputSpec(shape=input_shape) |
| 113 | + if not self.layer.built: |
| 114 | + self.layer.build(input_shape) |
| 115 | + self.layer.built = True |
| 116 | + |
| 117 | + # initialise p |
| 118 | + self.p_logit = self.layer.add_weight(name='p_logit', |
| 119 | + shape=(1,), |
| 120 | + initializer=RandomUniform( |
| 121 | + *self.prob_init, |
| 122 | + seed=self.seed |
| 123 | + ), |
| 124 | + trainable=True) |
| 125 | + self.p = K.squeeze(K.sigmoid(self.p_logit), axis=0) |
| 126 | + |
| 127 | + super(ConcreteDropout, self).build(input_shape) |
| 128 | + |
| 129 | + # initialise regularizer / prior KL term |
| 130 | + weight = self.layer.kernel |
| 131 | + kernel_regularizer = ( |
| 132 | + self.weight_regularizer |
| 133 | + * K.sum(K.square(weight)) |
| 134 | + / (1. - self.p) |
| 135 | + ) |
| 136 | + dropout_regularizer = ( |
| 137 | + self.p * K.log(self.p) |
| 138 | + + (1. - self.p) * K.log(1. - self.p) |
| 139 | + ) * self.dropout_regularizer * input_dim |
| 140 | + regularizer = K.sum(kernel_regularizer + dropout_regularizer) |
| 141 | + self.layer.add_loss(regularizer) |
| 142 | + |
| 143 | + def call(self, inputs, training=None): |
| 144 | + def relaxed_dropped_inputs(): |
| 145 | + return self.layer.call(self._concrete_dropout(inputs, ( |
| 146 | + 'dense' |
| 147 | + if len(K.int_shape(inputs)) == 2 |
| 148 | + else 'conv2d' |
| 149 | + ))) |
| 150 | + |
| 151 | + return K.in_train_phase(relaxed_dropped_inputs, |
| 152 | + self.layer.call(inputs), |
| 153 | + training=training) |
| 154 | + |
| 155 | + def get_config(self): |
| 156 | + config = {'weight_regularizer': self.weight_regularizer, |
| 157 | + 'dropout_regularizer': self.dropout_regularizer, |
| 158 | + 'prob_init': self.prob_init, |
| 159 | + 'temp': self.temp, |
| 160 | + 'seed': self.seed} |
| 161 | + base_config = super(ConcreteDropout, self).get_config() |
| 162 | + return dict(list(base_config.items()) + list(config.items())) |
| 163 | + |
| 164 | + def compute_output_shape(self, input_shape): |
| 165 | + return self.layer.compute_output_shape(input_shape) |
0 commit comments