Skip to content

Commit 362ddf2

Browse files
authored
Add C++ demo for VAD+non-streaming ASR (#1964)
1 parent 1e23282 commit 362ddf2

6 files changed

+276
-45
lines changed

cmake/cmake_extension.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -64,6 +64,7 @@ def get_binaries():
6464
"sherpa-onnx-online-websocket-server",
6565
"sherpa-onnx-vad-microphone",
6666
"sherpa-onnx-vad-microphone-offline-asr",
67+
"sherpa-onnx-vad-with-offline-asr",
6768
]
6869

6970
if enable_alsa():

sherpa-onnx/csrc/CMakeLists.txt

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -452,6 +452,10 @@ if(SHERPA_ONNX_ENABLE_PORTAUDIO AND SHERPA_ONNX_ENABLE_BINARY)
452452
microphone.cc
453453
)
454454

455+
add_executable(sherpa-onnx-vad-with-offline-asr
456+
sherpa-onnx-vad-with-offline-asr.cc
457+
)
458+
455459
add_executable(sherpa-onnx-vad-microphone-offline-asr
456460
sherpa-onnx-vad-microphone-offline-asr.cc
457461
microphone.cc
@@ -475,6 +479,7 @@ if(SHERPA_ONNX_ENABLE_PORTAUDIO AND SHERPA_ONNX_ENABLE_BINARY)
475479
sherpa-onnx-microphone-offline-audio-tagging
476480
sherpa-onnx-vad-microphone
477481
sherpa-onnx-vad-microphone-offline-asr
482+
sherpa-onnx-vad-with-offline-asr
478483
)
479484
if(SHERPA_ONNX_ENABLE_TTS)
480485
list(APPEND exes

sherpa-onnx/csrc/online-ebranchformer-transducer-model.cc

Lines changed: 29 additions & 42 deletions
Original file line numberDiff line numberDiff line change
@@ -85,9 +85,8 @@ OnlineEbranchformerTransducerModel::OnlineEbranchformerTransducerModel(
8585
}
8686
}
8787

88-
8988
void OnlineEbranchformerTransducerModel::InitEncoder(void *model_data,
90-
size_t model_data_length) {
89+
size_t model_data_length) {
9190
encoder_sess_ = std::make_unique<Ort::Session>(
9291
env_, model_data, model_data_length, encoder_sess_opts_);
9392

@@ -153,9 +152,8 @@ void OnlineEbranchformerTransducerModel::InitEncoder(void *model_data,
153152
}
154153
}
155154

156-
157155
void OnlineEbranchformerTransducerModel::InitDecoder(void *model_data,
158-
size_t model_data_length) {
156+
size_t model_data_length) {
159157
decoder_sess_ = std::make_unique<Ort::Session>(
160158
env_, model_data, model_data_length, decoder_sess_opts_);
161159

@@ -180,7 +178,7 @@ void OnlineEbranchformerTransducerModel::InitDecoder(void *model_data,
180178
}
181179

182180
void OnlineEbranchformerTransducerModel::InitJoiner(void *model_data,
183-
size_t model_data_length) {
181+
size_t model_data_length) {
184182
joiner_sess_ = std::make_unique<Ort::Session>(
185183
env_, model_data, model_data_length, joiner_sess_opts_);
186184

@@ -200,7 +198,6 @@ void OnlineEbranchformerTransducerModel::InitJoiner(void *model_data,
200198
}
201199
}
202200

203-
204201
std::vector<Ort::Value> OnlineEbranchformerTransducerModel::StackStates(
205202
const std::vector<std::vector<Ort::Value>> &states) const {
206203
int32_t batch_size = static_cast<int32_t>(states.size());
@@ -215,28 +212,28 @@ std::vector<Ort::Value> OnlineEbranchformerTransducerModel::StackStates(
215212
ans.reserve(num_states);
216213

217214
for (int32_t i = 0; i != num_hidden_layers_; ++i) {
218-
{ // cached_key
215+
{ // cached_key
219216
for (int32_t n = 0; n != batch_size; ++n) {
220217
buf[n] = &states[n][4 * i];
221218
}
222219
auto v = Cat(allocator, buf, /* axis */ 0);
223220
ans.push_back(std::move(v));
224221
}
225-
{ // cached_value
222+
{ // cached_value
226223
for (int32_t n = 0; n != batch_size; ++n) {
227224
buf[n] = &states[n][4 * i + 1];
228225
}
229226
auto v = Cat(allocator, buf, 0);
230227
ans.push_back(std::move(v));
231228
}
232-
{ // cached_conv
229+
{ // cached_conv
233230
for (int32_t n = 0; n != batch_size; ++n) {
234231
buf[n] = &states[n][4 * i + 2];
235232
}
236233
auto v = Cat(allocator, buf, 0);
237234
ans.push_back(std::move(v));
238235
}
239-
{ // cached_conv_fusion
236+
{ // cached_conv_fusion
240237
for (int32_t n = 0; n != batch_size; ++n) {
241238
buf[n] = &states[n][4 * i + 3];
242239
}
@@ -245,7 +242,7 @@ std::vector<Ort::Value> OnlineEbranchformerTransducerModel::StackStates(
245242
}
246243
}
247244

248-
{ // processed_lens
245+
{ // processed_lens
249246
for (int32_t n = 0; n != batch_size; ++n) {
250247
buf[n] = &states[n][num_states - 1];
251248
}
@@ -256,11 +253,9 @@ std::vector<Ort::Value> OnlineEbranchformerTransducerModel::StackStates(
256253
return ans;
257254
}
258255

259-
260256
std::vector<std::vector<Ort::Value>>
261257
OnlineEbranchformerTransducerModel::UnStackStates(
262258
const std::vector<Ort::Value> &states) const {
263-
264259
assert(static_cast<int32_t>(states.size()) == num_hidden_layers_ * 4 + 1);
265260

266261
int32_t batch_size = states[0].GetTensorTypeAndShapeInfo().GetShape()[0];
@@ -272,31 +267,31 @@ OnlineEbranchformerTransducerModel::UnStackStates(
272267
ans.resize(batch_size);
273268

274269
for (int32_t i = 0; i != num_hidden_layers_; ++i) {
275-
{ // cached_key
270+
{ // cached_key
276271
auto v = Unbind(allocator, &states[i * 4], /* axis */ 0);
277272
assert(static_cast<int32_t>(v.size()) == batch_size);
278273

279274
for (int32_t n = 0; n != batch_size; ++n) {
280275
ans[n].push_back(std::move(v[n]));
281276
}
282277
}
283-
{ // cached_value
278+
{ // cached_value
284279
auto v = Unbind(allocator, &states[i * 4 + 1], 0);
285280
assert(static_cast<int32_t>(v.size()) == batch_size);
286281

287282
for (int32_t n = 0; n != batch_size; ++n) {
288283
ans[n].push_back(std::move(v[n]));
289284
}
290285
}
291-
{ // cached_conv
286+
{ // cached_conv
292287
auto v = Unbind(allocator, &states[i * 4 + 2], 0);
293288
assert(static_cast<int32_t>(v.size()) == batch_size);
294289

295290
for (int32_t n = 0; n != batch_size; ++n) {
296291
ans[n].push_back(std::move(v[n]));
297292
}
298293
}
299-
{ // cached_conv_fusion
294+
{ // cached_conv_fusion
300295
auto v = Unbind(allocator, &states[i * 4 + 3], 0);
301296
assert(static_cast<int32_t>(v.size()) == batch_size);
302297

@@ -306,7 +301,7 @@ OnlineEbranchformerTransducerModel::UnStackStates(
306301
}
307302
}
308303

309-
{ // processed_lens
304+
{ // processed_lens
310305
auto v = Unbind<int64_t>(allocator, &states.back(), 0);
311306
assert(static_cast<int32_t>(v.size()) == batch_size);
312307

@@ -318,7 +313,6 @@ OnlineEbranchformerTransducerModel::UnStackStates(
318313
return ans;
319314
}
320315

321-
322316
std::vector<Ort::Value>
323317
OnlineEbranchformerTransducerModel::GetEncoderInitStates() {
324318
std::vector<Ort::Value> ans;
@@ -332,40 +326,37 @@ OnlineEbranchformerTransducerModel::GetEncoderInitStates() {
332326
int32_t channels_conv_fusion = 2 * hidden_size_;
333327

334328
for (int32_t i = 0; i != num_hidden_layers_; ++i) {
335-
{ // cached_key_{i}
329+
{ // cached_key_{i}
336330
std::array<int64_t, 4> s{1, num_heads_, left_context_len_, head_dim_};
337-
auto v =
338-
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
331+
auto v = Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
339332
Fill(&v, 0);
340333
ans.push_back(std::move(v));
341334
}
342335

343-
{ // cahced_value_{i}
336+
{ // cahced_value_{i}
344337
std::array<int64_t, 4> s{1, num_heads_, left_context_len_, head_dim_};
345-
auto v =
346-
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
338+
auto v = Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
347339
Fill(&v, 0);
348340
ans.push_back(std::move(v));
349341
}
350342

351-
{ // cached_conv_{i}
343+
{ // cached_conv_{i}
352344
std::array<int64_t, 3> s{1, channels_conv, left_context_conv};
353-
auto v =
354-
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
345+
auto v = Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
355346
Fill(&v, 0);
356347
ans.push_back(std::move(v));
357348
}
358349

359-
{ // cached_conv_fusion_{i}
360-
std::array<int64_t, 3> s{1, channels_conv_fusion, left_context_conv_fusion};
361-
auto v =
362-
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
350+
{ // cached_conv_fusion_{i}
351+
std::array<int64_t, 3> s{1, channels_conv_fusion,
352+
left_context_conv_fusion};
353+
auto v = Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
363354
Fill(&v, 0);
364355
ans.push_back(std::move(v));
365356
}
366357
} // num_hidden_layers_
367358

368-
{ // processed_lens
359+
{ // processed_lens
369360
std::array<int64_t, 1> s{1};
370361
auto v = Ort::Value::CreateTensor<int64_t>(allocator_, s.data(), s.size());
371362
Fill<int64_t>(&v, 0);
@@ -375,11 +366,10 @@ OnlineEbranchformerTransducerModel::GetEncoderInitStates() {
375366
return ans;
376367
}
377368

378-
379369
std::pair<Ort::Value, std::vector<Ort::Value>>
380-
OnlineEbranchformerTransducerModel::RunEncoder(Ort::Value features,
381-
std::vector<Ort::Value> states,
382-
Ort::Value /* processed_frames */) {
370+
OnlineEbranchformerTransducerModel::RunEncoder(
371+
Ort::Value features, std::vector<Ort::Value> states,
372+
Ort::Value /* processed_frames */) {
383373
std::vector<Ort::Value> encoder_inputs;
384374
encoder_inputs.reserve(1 + states.size());
385375

@@ -402,7 +392,6 @@ OnlineEbranchformerTransducerModel::RunEncoder(Ort::Value features,
402392
return {std::move(encoder_out[0]), std::move(next_states)};
403393
}
404394

405-
406395
Ort::Value OnlineEbranchformerTransducerModel::RunDecoder(
407396
Ort::Value decoder_input) {
408397
auto decoder_out = decoder_sess_->Run(
@@ -411,9 +400,8 @@ Ort::Value OnlineEbranchformerTransducerModel::RunDecoder(
411400
return std::move(decoder_out[0]);
412401
}
413402

414-
415-
Ort::Value OnlineEbranchformerTransducerModel::RunJoiner(Ort::Value encoder_out,
416-
Ort::Value decoder_out) {
403+
Ort::Value OnlineEbranchformerTransducerModel::RunJoiner(
404+
Ort::Value encoder_out, Ort::Value decoder_out) {
417405
std::array<Ort::Value, 2> joiner_input = {std::move(encoder_out),
418406
std::move(decoder_out)};
419407
auto logit =
@@ -424,7 +412,6 @@ Ort::Value OnlineEbranchformerTransducerModel::RunJoiner(Ort::Value encoder_out,
424412
return std::move(logit[0]);
425413
}
426414

427-
428415
#if __ANDROID_API__ >= 9
429416
template OnlineEbranchformerTransducerModel::OnlineEbranchformerTransducerModel(
430417
AAssetManager *mgr, const OnlineModelConfig &config);

sherpa-onnx/csrc/online-ebranchformer-transducer-model.h

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ class OnlineEbranchformerTransducerModel : public OnlineTransducerModel {
2222

2323
template <typename Manager>
2424
OnlineEbranchformerTransducerModel(Manager *mgr,
25-
const OnlineModelConfig &config);
25+
const OnlineModelConfig &config);
2626

2727
std::vector<Ort::Value> StackStates(
2828
const std::vector<std::vector<Ort::Value>> &states) const override;

sherpa-onnx/csrc/sherpa-onnx-offline.cc

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -131,10 +131,10 @@ for a list of pre-trained models to download.
131131
std::vector<sherpa_onnx::OfflineStream *> ss_pointers;
132132
float duration = 0;
133133
for (int32_t i = 1; i <= po.NumArgs(); ++i) {
134-
const std::string wav_filename = po.GetArg(i);
134+
std::string wav_filename = po.GetArg(i);
135135
int32_t sampling_rate = -1;
136136
bool is_ok = false;
137-
const std::vector<float> samples =
137+
std::vector<float> samples =
138138
sherpa_onnx::ReadWave(wav_filename, &sampling_rate, &is_ok);
139139
if (!is_ok) {
140140
fprintf(stderr, "Failed to read '%s'\n", wav_filename.c_str());

0 commit comments

Comments
 (0)