Skip to content

Commit a7aae9e

Browse files
committed
doc adjustments
1 parent 0ce7fe4 commit a7aae9e

File tree

2 files changed

+14
-10
lines changed

2 files changed

+14
-10
lines changed

docs/src/introduction.md

Lines changed: 12 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -899,14 +899,16 @@ that approximates $\cos(x)$ near $0$:
899899

900900
```jldoctest introduction
901901
julia> a,b,c,h = symbols("a,b,c,h", real=true)
902-
(a, b, c, h)
902+
4-element Vector{Sym}:
903+
a
904+
b
905+
c
906+
h
903907
904908
julia> p = a*x^2 + b*x + c
905-
2
906-
a⋅x + b⋅x + c
909+
a*x^2 + b*x + c
907910
908-
julia> fn = cos
909-
cos (generic function with 14 methods)
911+
julia> fn = cos;
910912
911913
julia> exs = [fn(0*h)-p(x=>0), fn(h)-p(x => h), fn(2h)-p(x => 2h)]
912914
3-element Vector{Sym}:
@@ -995,12 +997,14 @@ Here is an alternative way of asking a previous question on a pair of linear equ
995997

996998
```jldoctest introduction
997999
julia> x, y = symbols("x,y", real=true)
998-
(x, y)
1000+
2-element Vector{Sym}:
1001+
x
1002+
y
9991003
10001004
julia> exs = [2x+3y ⩵ 6, 3x-4y ⩵ 12] ## Using \Equal[tab]
10011005
2-element Vector{Sym}:
1002-
2⋅x + 3⋅y = 6
1003-
3⋅x - 4⋅y = 12
1006+
Eq(2*x + 3*y, 6)
1007+
Eq(3*x - 4*y, 12)
10041008
10051009
julia> d = solve(exs);
10061010

docs/src/overview.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,7 @@ sin(2*x)
5858
The package also provides methods for some sympy methods, such as `simplify` above. To make this work, there needs to be a means to take `Sym` objects to the `Py` counterparts and to take `Py` objects to `Sym`. As these conversions may be type dependent two operators (with the unicode equivalents `` and ``) are used internally to allow the definition along these lines:
5959

6060
```
61-
simplify(x::Sym, args...; kwargs...) = ↑(Py(sympy).simplify(↓(x), ↓(args)...; ↓(kwargs)...))
61+
simplify(x::Sym, args...; kwargs...) = ↑(sympy.simplify(↓(x), ↓(args)...; ↓(kwargs)...))
6262
```
6363

6464
The `expand_log` function is not wrapped as such, but can be called from the `sympy` object exported by `SymPyCall`:
@@ -74,7 +74,7 @@ julia> sympy.expand_log(log(2x))
7474
log(x) + log(2)
7575
```
7676

77-
Methods of `sympy` are also defined using the conversion operators above.
77+
Methods of `sympy` are also called using the conversion operators above.
7878

7979
## Using other SymPy modules
8080

0 commit comments

Comments
 (0)