Skip to content

Re-design for sklearn #1

@juifa-tsai

Description

@juifa-tsai

The format of module is not completely compatible to sklearn. The reason for adopting to sklearn is because of the parameter optimization. Sklearn provides well-defined tool for tuning parameter and validation. Thus, making the module to adopt sklearn is kind of way to simplify future work.

  1. Change get_params() to output the default parameter sets with {'name':value} instead.
  2. Add relevant function to output results.
  3. Add set_params() to any model for implementation grid search in the future, instead of update each parameter.
  4. Add score() to every models.

Metadata

Metadata

Assignees

Labels

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions