-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolo_annot_all.py
88 lines (74 loc) · 2.78 KB
/
yolo_annot_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import argparse
import csv
import os
from pydicom import dcmread
from tqdm import tqdm
import shutil
import cv2
parser = argparse.ArgumentParser()
parser.add_argument('--dataroot', type=str,
default='/eva_data/zchin/rsna_data', help='data root path')
args = parser.parse_args()
if __name__ == '__main__':
label_path = os.path.join(args.dataroot, 'stage_2_train_labels.csv')
label_f = open(label_path)
csvreader = csv.reader(label_f)
header = next(csvreader)
train_dir = os.path.join(args.dataroot, 'stage_2_train_images')
annot_dir = os.path.join(args.dataroot+'_all', 'annotations/all_train')
dest_img_dir = os.path.join(args.dataroot+'_all', 'images/all_train')
if not os.path.isdir(annot_dir):
os.makedirs(annot_dir)
os.makedirs(annot_dir+'_no_obj')
if not os.path.isdir(dest_img_dir):
os.makedirs(dest_img_dir)
os.makedirs(dest_img_dir+'_no_obj')
cnt = 0
prev_patient_id = '0'
annot_path = None
pbar = tqdm(csvreader)
for row in pbar:
target = int(row[5])
# process no-object image
if target == 0:
cnt += 1
save_path = os.path.join(annot_dir+'_no_obj', f'{row[0]}.txt')
with open(save_path, mode='w'):
pass
img_path = os.path.join(train_dir, f'{row[0]}.dcm')
ds = dcmread(img_path)
img = ds.pixel_array
equ_img = cv2.equalizeHist(img)
cv2.imwrite(os.path.join(
dest_img_dir+'_no_obj', f'{row[0]}.png'), equ_img)
continue
patient_id, x, y, width, height = row[0], float(
row[1]), float(row[2]), float(row[3]), float(row[4])
pbar.set_description(patient_id)
# get image information
img_path = os.path.join(train_dir, f'{patient_id}.dcm')
ds = dcmread(img_path)
w, h = ds.Columns, ds.Rows
# convert to yolo annotation
obj_class = 0
x_center = (x+width/2)/w
y_center = (y+height/2)/h
width = width/w
height = height/w
label_str = f"{obj_class} {x_center} {y_center} {width} {height}\n"
# write to file
if patient_id == prev_patient_id:
f.write(label_str)
else:
if annot_path is not None:
f.close()
annot_path = os.path.join(annot_dir, f"{patient_id}.txt")
f = open(annot_path, mode='w')
f.write(label_str)
prev_patient_id = patient_id
# move image (separate useful image from others) and convert to png
img = ds.pixel_array
equ_img = cv2.equalizeHist(img)
cv2.imwrite(os.path.join(
dest_img_dir, f'{patient_id}.png'), equ_img)
print(f"no detected object count: {cnt}")