Skip to content

Commit 34c5163

Browse files
committed
Refactored common upcast for integral-type accumulators
1 parent 7681493 commit 34c5163

File tree

4 files changed

+34
-51
lines changed

4 files changed

+34
-51
lines changed

jax/_src/numpy/lax_numpy.py

Lines changed: 0 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -3364,13 +3364,6 @@ def trace(a: ArrayLike, offset: int = 0, axis1: int = 0, axis2: int = 1,
33643364
dtypes.check_user_dtype_supported(dtype, "trace")
33653365

33663366
a_shape = shape(a)
3367-
if dtype is None:
3368-
dtype = _dtype(a)
3369-
if issubdtype(dtype, integer):
3370-
default_int = dtypes.canonicalize_dtype(int)
3371-
if iinfo(dtype).bits < iinfo(default_int).bits:
3372-
dtype = default_int
3373-
33743367
a = moveaxis(a, (axis1, axis2), (-2, -1))
33753368

33763369
# Mask out the diagonal and reduce.

jax/_src/numpy/reductions.py

Lines changed: 33 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626

2727
from jax import lax
2828
from jax._src import api
29-
from jax._src import core, config
29+
from jax._src import core
3030
from jax._src import dtypes
3131
from jax._src.numpy import ufuncs
3232
from jax._src.numpy.util import (
@@ -65,6 +65,20 @@ def _upcast_f16(dtype: DTypeLike) -> DType:
6565
return np.dtype('float32')
6666
return np.dtype(dtype)
6767

68+
def _promote_integer_dtype(dtype: DTypeLike) -> DTypeLike:
69+
# Note: NumPy always promotes to 64-bit; jax instead promotes to the
70+
# default dtype as defined by dtypes.int_ or dtypes.uint.
71+
if dtypes.issubdtype(dtype, np.bool_):
72+
return dtypes.int_
73+
elif dtypes.issubdtype(dtype, np.unsignedinteger):
74+
if np.iinfo(dtype).bits < np.iinfo(dtypes.uint).bits:
75+
return dtypes.uint
76+
elif dtypes.issubdtype(dtype, np.integer):
77+
if np.iinfo(dtype).bits < np.iinfo(dtypes.int_).bits:
78+
return dtypes.int_
79+
return dtype
80+
81+
6882
ReductionOp = Callable[[Any, Any], Any]
6983

7084
def _reduction(a: ArrayLike, name: str, np_fun: Any, op: ReductionOp, init_val: ArrayLike,
@@ -103,16 +117,7 @@ def _reduction(a: ArrayLike, name: str, np_fun: Any, op: ReductionOp, init_val:
103117
result_dtype = dtype or dtypes.dtype(a)
104118

105119
if dtype is None and promote_integers:
106-
# Note: NumPy always promotes to 64-bit; jax instead promotes to the
107-
# default dtype as defined by dtypes.int_ or dtypes.uint.
108-
if dtypes.issubdtype(result_dtype, np.bool_):
109-
result_dtype = dtypes.int_
110-
elif dtypes.issubdtype(result_dtype, np.unsignedinteger):
111-
if np.iinfo(result_dtype).bits < np.iinfo(dtypes.uint).bits:
112-
result_dtype = dtypes.uint
113-
elif dtypes.issubdtype(result_dtype, np.integer):
114-
if np.iinfo(result_dtype).bits < np.iinfo(dtypes.int_).bits:
115-
result_dtype = dtypes.int_
120+
result_dtype = _promote_integer_dtype(result_dtype)
116121

117122
result_dtype = dtypes.canonicalize_dtype(result_dtype)
118123

@@ -663,7 +668,8 @@ def __call__(self, a: ArrayLike, axis: Axis = None,
663668
"""
664669

665670
def _make_cumulative_reduction(np_reduction: Any, reduction: Callable[..., Array],
666-
fill_nan: bool = False, fill_value: ArrayLike = 0) -> CumulativeReduction:
671+
fill_nan: bool = False, fill_value: ArrayLike = 0,
672+
promote_integers: bool = False) -> CumulativeReduction:
667673
@implements(np_reduction, skip_params=['out'],
668674
lax_description=CUML_REDUCTION_LAX_DESCRIPTION)
669675
def cumulative_reduction(a: ArrayLike, axis: Axis = None,
@@ -691,12 +697,18 @@ def _cumulative_reduction(a: ArrayLike, axis: Axis = None,
691697
if fill_nan:
692698
a = _where(lax_internal._isnan(a), _lax_const(a, fill_value), a)
693699

694-
if not dtype and dtypes.dtype(a) == np.bool_:
695-
dtype = dtypes.canonicalize_dtype(dtypes.int_)
696-
if dtype:
697-
a = lax.convert_element_type(a, dtype)
700+
result_type: DTypeLike = dtypes.dtype(dtype or a)
701+
if dtype is None and promote_integers or dtypes.issubdtype(result_type, np.bool_):
702+
result_type = _promote_integer_dtype(result_type)
703+
result_type = dtypes.canonicalize_dtype(result_type)
704+
705+
a = lax.convert_element_type(a, result_type)
706+
result = reduction(a, axis)
698707

699-
return reduction(a, axis)
708+
# We downcast to boolean because we accumulate in integer types
709+
if dtypes.issubdtype(dtype, np.bool_):
710+
result = lax.convert_element_type(result, np.bool_)
711+
return result
700712

701713
return cumulative_reduction
702714

@@ -707,6 +719,9 @@ def _cumulative_reduction(a: ArrayLike, axis: Axis = None,
707719
fill_nan=True, fill_value=0)
708720
nancumprod = _make_cumulative_reduction(np.nancumprod, lax.cumprod,
709721
fill_nan=True, fill_value=1)
722+
_cumsum_with_promotion = _make_cumulative_reduction(
723+
np.cumsum, lax.cumsum, fill_nan=False, promote_integers=True
724+
)
710725

711726
@implements(getattr(np, 'cumulative_sum', None))
712727
def cumulative_sum(
@@ -730,12 +745,7 @@ def cumulative_sum(
730745

731746
axis = _canonicalize_axis(axis, x.ndim)
732747
dtypes.check_user_dtype_supported(dtype)
733-
kind = x.dtype.kind
734-
if (dtype is None and kind in {'i', 'u'}
735-
and x.dtype.itemsize*8 < int(config.default_dtype_bits.value)):
736-
dtype = dtypes.canonicalize_dtype(dtypes._default_types[kind])
737-
x = x.astype(dtype=dtype or x.dtype)
738-
out = cumsum(x, axis=axis)
748+
out = _cumsum_with_promotion(x, axis=axis, dtype=dtype)
739749
if include_initial:
740750
zeros_shape = list(x.shape)
741751
zeros_shape[axis] = 1

jax/experimental/array_api/_data_type_functions.py

Lines changed: 0 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -76,18 +76,3 @@ def finfo(type, /) -> FInfo:
7676
smallest_normal=float(info.smallest_normal),
7777
dtype=jnp.dtype(type)
7878
)
79-
80-
# TODO(micky774): Update utility to only promote integral types
81-
def _promote_to_default_dtype(x):
82-
if x.dtype.kind == 'b':
83-
return x
84-
elif x.dtype.kind == 'i':
85-
return x.astype(jnp.int_)
86-
elif x.dtype.kind == 'u':
87-
return x.astype(jnp.uint)
88-
elif x.dtype.kind == 'f':
89-
return x.astype(jnp.float_)
90-
elif x.dtype.kind == 'c':
91-
return x.astype(jnp.complex_)
92-
else:
93-
raise ValueError(f"Unrecognized {x.dtype=}")

tests/lax_numpy_reducers_test.py

Lines changed: 1 addition & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -791,13 +791,8 @@ def testCumulativeSum(self, shape, axis, dtype, out_dtype, include_initial):
791791
rng = jtu.rand_some_zero(self.rng())
792792

793793
def np_mock_op(x, axis=None, dtype=None, include_initial=False):
794-
kind = x.dtype.kind
795-
if (dtype is None and kind in {'i', 'u'}
796-
and x.dtype.itemsize*8 < int(config.default_dtype_bits.value)):
797-
dtype = dtypes.canonicalize_dtype(dtypes._default_types[kind])
798794
axis = axis or 0
799-
x = x.astype(dtype=dtype or x.dtype)
800-
out = jnp.cumsum(x, axis=axis)
795+
out = np.cumsum(x, axis=axis, dtype=dtype or x.dtype)
801796
if include_initial:
802797
zeros_shape = list(x.shape)
803798
zeros_shape[axis] = 1

0 commit comments

Comments
 (0)