@@ -98,12 +98,12 @@ subroutine dqag(f, a, b, Epsabs, Epsrel, Key, Result, Abserr, Neval, Ier, &
98
98
99
99
implicit none
100
100
101
- procedure (func) :: f ! ! function subprogam defining the integrand function `f(x)`.
101
+ procedure (func) :: f ! ! function subprogram defining the integrand function `f(x)`.
102
102
real (wp), intent (in ) :: a ! ! lower limit of integration
103
103
real (wp), intent (out ) :: Abserr ! ! estimate of the modulus of the absolute error,
104
104
! ! which should equal or exceed `abs(i-result)`
105
105
real (wp), intent (in ) :: b ! ! upper limit of integration
106
- real (wp), intent (in ) :: Epsabs ! ! absolute accoracy requested
106
+ real (wp), intent (in ) :: Epsabs ! ! absolute accuracy requested
107
107
real (wp), intent (in ) :: Epsrel ! ! relative accuracy requested
108
108
! ! if epsabs<=0
109
109
! ! and epsrel<max(50*rel.mach.acc.,0.5e-28),
@@ -152,7 +152,7 @@ subroutine dqag(f, a, b, Epsabs, Epsrel, Key, Result, Abserr, Neval, Ier, &
152
152
! ! adjustments into account). however, if
153
153
! ! this yield no improvement it is advised
154
154
! ! to analyze the integrand in order to
155
- ! ! determine the integration difficulaties .
155
+ ! ! determine the integration difficulties .
156
156
! ! if the position of a local difficulty can
157
157
! ! be determined (i.e.singularity,
158
158
! ! discontinuity within the interval) one
@@ -187,7 +187,7 @@ subroutine dqag(f, a, b, Epsabs, Epsrel, Key, Result, Abserr, Neval, Ier, &
187
187
! ! * 25 - 51 points if key = 5,
188
188
! ! * 30 - 61 points if key>5.
189
189
integer , intent (out ) :: Last ! ! on return, `last` equals the number of subintervals
190
- ! ! produced in the subdiviosion process, which
190
+ ! ! produced in the subdivision process, which
191
191
! ! determines the number of significant elements
192
192
! ! actually in the work arrays.
193
193
integer , intent (out ) :: Neval ! ! number of integrand evaluations
@@ -238,7 +238,7 @@ subroutine dqage(f, a, b, Epsabs, Epsrel, Key, Limit, Result, Abserr, &
238
238
239
239
procedure (func) :: f ! ! function subprogram defining the integrand function `f(x)`.
240
240
real (wp), intent (in ) :: a ! ! lower limit of integration
241
- real (wp), intent (in ) :: b ! ! uppwer limit of integration
241
+ real (wp), intent (in ) :: b ! ! upper limit of integration
242
242
real (wp), intent (in ) :: Epsabs ! ! absolute accuracy requested
243
243
real (wp), intent (in ) :: Epsrel ! ! relative accuracy requested
244
244
! ! if `epsabs<=0`
@@ -2657,7 +2657,7 @@ subroutine dqawf(f, a, Omega, Integr, Epsabs, Result, Abserr, Neval, Ier, &
2657
2657
! ! interval at this point and calling
2658
2658
! ! appropriate integrators on the subranges.
2659
2659
! ! * ier = 4 the extrapolation table constructed for
2660
- ! ! convergence accelaration of the series
2660
+ ! ! convergence acceleration of the series
2661
2661
! ! formed by the integral contributions over
2662
2662
! ! the cycles, does not converge to within
2663
2663
! ! the requested accuracy.
@@ -2740,7 +2740,7 @@ subroutine dqawf(f, a, Omega, Integr, Epsabs, Result, Abserr, Neval, Ier, &
2740
2740
! ! * `work(1), ..., work(lst)` contain the integral
2741
2741
! ! approximations over the cycles,
2742
2742
! ! * `work(limlst+1), ..., work(limlst+lst)` contain
2743
- ! ! the error extimates over the cycles.
2743
+ ! ! the error estimates over the cycles.
2744
2744
! !
2745
2745
! ! further elements of work have no specific
2746
2746
! ! meaning for the user.
@@ -2784,7 +2784,7 @@ end subroutine dqawf
2784
2784
! same as [[dqawf]] but provides more information and control
2785
2785
!
2786
2786
! the routine calculates an approximation result to a
2787
- ! given fourier integal
2787
+ ! given fourier integral
2788
2788
! i = integral of `f(x)*w(x)` over `(a,infinity)`
2789
2789
! where `w(x)=cos(omega*x)` or `w(x)=sin(omega*x)`,
2790
2790
! hopefully satisfying following claim for accuracy
@@ -5877,7 +5877,7 @@ subroutine dqk41(f, a, b, Result, Abserr, Resabs, Resasc)
5877
5877
real (wp), intent (out ) :: Abserr ! ! estimate of the modulus of the absolute error,
5878
5878
! ! which should not exceed `abs(i-result)`
5879
5879
real (wp), intent (out ) :: Resabs ! ! approximation to the integral j
5880
- real (wp), intent (out ) :: Resasc ! ! approximation to the integal of abs(f-i/(b-a))
5880
+ real (wp), intent (out ) :: Resasc ! ! approximation to the integral of abs(f-i/(b-a))
5881
5881
! ! over `(a,b)`
5882
5882
5883
5883
real (wp) :: dhlgth, fc, fsum, fv1(20 ), fv2(20 )
@@ -6237,7 +6237,7 @@ subroutine dqk61(f, a, b, Result, Abserr, Resabs, Resasc)
6237
6237
9.63687371746442596394686263518098650964e-2_wp , &
6238
6238
9.95934205867952670627802821035694765299e-2_wp , &
6239
6239
1.01762389748405504596428952168554044633e-1_wp , &
6240
- 1.02852652893558840341285636705415043868e-1_wp ] ! ! weigths of the 30-point gauss rule
6240
+ 1.02852652893558840341285636705415043868e-1_wp ] ! ! weights of the 30-point gauss rule
6241
6241
6242
6242
real (wp), dimension (31 ), parameter :: xgk = [ &
6243
6243
9.99484410050490637571325895705810819469e-1_wp , &
0 commit comments