Skip to content

Commit a83a344

Browse files
committed
fixed some typos in the comments
1 parent 6ed1472 commit a83a344

File tree

1 file changed

+10
-10
lines changed

1 file changed

+10
-10
lines changed

src/quadpack_generic.F90

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -98,12 +98,12 @@ subroutine dqag(f, a, b, Epsabs, Epsrel, Key, Result, Abserr, Neval, Ier, &
9898

9999
implicit none
100100

101-
procedure(func) :: f !! function subprogam defining the integrand function `f(x)`.
101+
procedure(func) :: f !! function subprogram defining the integrand function `f(x)`.
102102
real(wp), intent(in) :: a !! lower limit of integration
103103
real(wp), intent(out) :: Abserr !! estimate of the modulus of the absolute error,
104104
!! which should equal or exceed `abs(i-result)`
105105
real(wp), intent(in) :: b !! upper limit of integration
106-
real(wp), intent(in) :: Epsabs !! absolute accoracy requested
106+
real(wp), intent(in) :: Epsabs !! absolute accuracy requested
107107
real(wp), intent(in) :: Epsrel !! relative accuracy requested
108108
!! if epsabs<=0
109109
!! and epsrel<max(50*rel.mach.acc.,0.5e-28),
@@ -152,7 +152,7 @@ subroutine dqag(f, a, b, Epsabs, Epsrel, Key, Result, Abserr, Neval, Ier, &
152152
!! adjustments into account). however, if
153153
!! this yield no improvement it is advised
154154
!! to analyze the integrand in order to
155-
!! determine the integration difficulaties.
155+
!! determine the integration difficulties.
156156
!! if the position of a local difficulty can
157157
!! be determined (i.e.singularity,
158158
!! discontinuity within the interval) one
@@ -187,7 +187,7 @@ subroutine dqag(f, a, b, Epsabs, Epsrel, Key, Result, Abserr, Neval, Ier, &
187187
!! * 25 - 51 points if key = 5,
188188
!! * 30 - 61 points if key>5.
189189
integer, intent(out) :: Last !! on return, `last` equals the number of subintervals
190-
!! produced in the subdiviosion process, which
190+
!! produced in the subdivision process, which
191191
!! determines the number of significant elements
192192
!! actually in the work arrays.
193193
integer, intent(out) :: Neval !! number of integrand evaluations
@@ -238,7 +238,7 @@ subroutine dqage(f, a, b, Epsabs, Epsrel, Key, Limit, Result, Abserr, &
238238

239239
procedure(func) :: f !! function subprogram defining the integrand function `f(x)`.
240240
real(wp), intent(in) :: a !! lower limit of integration
241-
real(wp), intent(in) :: b !! uppwer limit of integration
241+
real(wp), intent(in) :: b !! upper limit of integration
242242
real(wp), intent(in) :: Epsabs !! absolute accuracy requested
243243
real(wp), intent(in) :: Epsrel !! relative accuracy requested
244244
!! if `epsabs<=0`
@@ -2657,7 +2657,7 @@ subroutine dqawf(f, a, Omega, Integr, Epsabs, Result, Abserr, Neval, Ier, &
26572657
!! interval at this point and calling
26582658
!! appropriate integrators on the subranges.
26592659
!! * ier = 4 the extrapolation table constructed for
2660-
!! convergence accelaration of the series
2660+
!! convergence acceleration of the series
26612661
!! formed by the integral contributions over
26622662
!! the cycles, does not converge to within
26632663
!! the requested accuracy.
@@ -2740,7 +2740,7 @@ subroutine dqawf(f, a, Omega, Integr, Epsabs, Result, Abserr, Neval, Ier, &
27402740
!! * `work(1), ..., work(lst)` contain the integral
27412741
!! approximations over the cycles,
27422742
!! * `work(limlst+1), ..., work(limlst+lst)` contain
2743-
!! the error extimates over the cycles.
2743+
!! the error estimates over the cycles.
27442744
!!
27452745
!! further elements of work have no specific
27462746
!! meaning for the user.
@@ -2784,7 +2784,7 @@ end subroutine dqawf
27842784
! same as [[dqawf]] but provides more information and control
27852785
!
27862786
! the routine calculates an approximation result to a
2787-
! given fourier integal
2787+
! given fourier integral
27882788
! i = integral of `f(x)*w(x)` over `(a,infinity)`
27892789
! where `w(x)=cos(omega*x)` or `w(x)=sin(omega*x)`,
27902790
! hopefully satisfying following claim for accuracy
@@ -5877,7 +5877,7 @@ subroutine dqk41(f, a, b, Result, Abserr, Resabs, Resasc)
58775877
real(wp), intent(out) :: Abserr !! estimate of the modulus of the absolute error,
58785878
!! which should not exceed `abs(i-result)`
58795879
real(wp), intent(out) :: Resabs !! approximation to the integral j
5880-
real(wp), intent(out) :: Resasc !! approximation to the integal of abs(f-i/(b-a))
5880+
real(wp), intent(out) :: Resasc !! approximation to the integral of abs(f-i/(b-a))
58815881
!! over `(a,b)`
58825882

58835883
real(wp) :: dhlgth, fc, fsum, fv1(20), fv2(20)
@@ -6237,7 +6237,7 @@ subroutine dqk61(f, a, b, Result, Abserr, Resabs, Resasc)
62376237
9.63687371746442596394686263518098650964e-2_wp, &
62386238
9.95934205867952670627802821035694765299e-2_wp, &
62396239
1.01762389748405504596428952168554044633e-1_wp, &
6240-
1.02852652893558840341285636705415043868e-1_wp] !! weigths of the 30-point gauss rule
6240+
1.02852652893558840341285636705415043868e-1_wp] !! weights of the 30-point gauss rule
62416241

62426242
real(wp), dimension(31), parameter :: xgk = [ &
62436243
9.99484410050490637571325895705810819469e-1_wp, &

0 commit comments

Comments
 (0)