@@ -46,7 +46,7 @@ program bspline_defc_test
46
46
real (wp),dimension (ndata) :: bcoef
47
47
real (wp),dimension (ndata* 10 ) :: x_int, y_int
48
48
49
- integer ,parameter :: nconst = 2 ! ! for [[dfc]]
49
+ integer ,parameter :: nconst = 4 ! ! for [[dfc]]
50
50
real (wp),dimension (nconst) :: xconst
51
51
real (wp),dimension (nconst) :: yconst
52
52
integer ,dimension (nconst) :: nderiv
@@ -137,20 +137,31 @@ program bspline_defc_test
137
137
!- -------------------------------------------------------
138
138
! now, do the least squares splines with some constraints:
139
139
140
- j = 1 ! 1st derivative
140
+ j = 1 ! 1st derivative constraints
141
+
141
142
itype = 2 ! (J-th deriv. at X) == Y
142
143
xconst(1 ) = xdata(1 )
143
144
yconst(1 ) = 0.0_wp ! == constraint for derivative at initial point
144
145
nderiv(1 ) = itype+4 * J
145
146
146
- j = 1 ! 1st derivative
147
- itype = 0 ! (J-th deriv. at X) <= Y.
148
- xconst(2 ) = xdata(ndata)
149
- yconst(2 ) = - 2.0_wp ! <= inequality constraint for derivative at final point
147
+ itype = 1 ! (J-th deriv. at X) >= Y.
148
+ xconst(2 ) = xdata(2 )
149
+ yconst(2 ) = 0.0_wp ! >= inequality constraint for derivative at seconmd point
150
150
nderiv(2 ) = itype+4 * J
151
151
152
- neqcon = 1 ! num equality constraints
153
- nincon = 1 ! num inequality constraints
152
+ itype = 0 ! (J-th deriv. at X) <= Y.
153
+ xconst(3 ) = xdata(ndata)
154
+ yconst(3 ) = - 2.0_wp ! <= inequality constraint for derivative at final point
155
+ nderiv(3 ) = itype+4 * J
156
+
157
+ itype = 3 ! (J-th deriv. at X) == (J-th deriv. at Y).
158
+ xconst(4 ) = xdata(3 )
159
+ yconst(4 ) = xdata(4 ) ! == constraint on 3rd and 4th derivatives
160
+ nderiv(4 ) = itype+4 * J
161
+
162
+ neqcon = 2 ! num equality constraints
163
+ nincon = 2 ! num inequality constraints
164
+
154
165
mode = 1 ! a new problem
155
166
l = nbkpt- nord+1
156
167
iw1 = nincon+2 * l
0 commit comments