|
| 1 | +import os |
| 2 | +import json |
| 3 | +import numpy as np |
| 4 | +import torch |
| 5 | +import nni |
| 6 | +from torch.utils.data import SubsetRandomSampler, SequentialSampler |
| 7 | +from torchvision import transforms |
| 8 | +from torchvision.datasets import CIFAR10, CIFAR100 |
| 9 | +from nni.nas.evaluator.pytorch import DataLoader, Classification |
| 10 | + |
| 11 | +from DartsSpace import DARTS_with_CIFAR100 as DartsSpace |
| 12 | + |
| 13 | + |
| 14 | +from nni.nas.space import model_context |
| 15 | +from tqdm import tqdm |
| 16 | +from IPython.display import clear_output |
| 17 | +from nni.nas.evaluator.pytorch import Lightning, Trainer |
| 18 | + |
| 19 | +from dependecies.data_generator import generate_arch_dicts |
| 20 | +from dependecies.darts_classification_module import DartsClassificationModule |
| 21 | + |
| 22 | +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 23 | +TEST = False |
| 24 | + |
| 25 | + |
| 26 | +ARCHITECTURES_PATH = "/kaggle/input/second-dataset/dataset" |
| 27 | +MAX_EPOCHS = 60 |
| 28 | +LEARNING_RATE = 0.025 |
| 29 | +BATCH_SIZE = 96 |
| 30 | +NUM_MODLES = 2000 |
| 31 | + |
| 32 | +DATASET = "CIFAR100" |
| 33 | + |
| 34 | +if DATASET == "CIFAR10": |
| 35 | + MEAN = [0.49139968, 0.48215827, 0.44653124] |
| 36 | + STD = [0.24703233, 0.24348505, 0.26158768] |
| 37 | +elif DATASET == "CIFAR100": |
| 38 | + MEAN = [0.5071, 0.4867, 0.4408] |
| 39 | + STD = [0.2673, 0.2564, 0.2762] |
| 40 | + |
| 41 | +SEED = 228 |
| 42 | +# random.seed(SEED) |
| 43 | +np.random.seed(SEED) |
| 44 | +torch.manual_seed(SEED) |
| 45 | +torch.cuda.manual_seed_all(SEED) # если есть GPU |
| 46 | +torch.backends.cudnn.deterministic = True |
| 47 | +torch.backends.cudnn.benchmark = False |
| 48 | + |
| 49 | + |
| 50 | +def load_json_from_directory(directory_path): |
| 51 | + json_data = [] |
| 52 | + for root, _, files in os.walk(directory_path): |
| 53 | + for file in files: |
| 54 | + if file.endswith('.json'): |
| 55 | + file_path = os.path.join(root, file) |
| 56 | + with open(file_path, 'r', encoding='utf-8') as f: |
| 57 | + try: |
| 58 | + data = json.load(f) |
| 59 | + json_data.append(data) |
| 60 | + except json.JSONDecodeError as e: |
| 61 | + print(f"Error decoding JSON from file {file_path}: {e}") |
| 62 | + return json_data |
| 63 | + |
| 64 | + |
| 65 | +def get_data_loaders(batch_size=512): |
| 66 | + """ |
| 67 | + Возвращает загрузчики данных для обучения и валидации. |
| 68 | +
|
| 69 | + Параметры: |
| 70 | + batch_size (int): Размер батча для загрузчиков данных. По умолчанию 1024. |
| 71 | +
|
| 72 | + Возвращает: |
| 73 | + tuple: Кортеж, содержащий два объекта DataLoader: |
| 74 | + - search_train_loader: Загрузчик данных для обучения. |
| 75 | + - search_valid_loader: Загрузчик данных для валидации. |
| 76 | + """ |
| 77 | + transform = transforms.Compose( |
| 78 | + [ |
| 79 | + transforms.RandomCrop(32, padding=4), |
| 80 | + transforms.RandomHorizontalFlip(), |
| 81 | + transforms.ToTensor(), |
| 82 | + transforms.Normalize(MEAN, STD), |
| 83 | + ] |
| 84 | + ) |
| 85 | + if DATASET == 'CIFAR10': |
| 86 | + train_data = nni.trace(CIFAR10)( |
| 87 | + root="./data", train=True, download=True, transform=transform |
| 88 | + ) |
| 89 | + elif DATASET == 'CIFAR100': |
| 90 | + train_data = nni.trace(CIFAR100)( |
| 91 | + root="./data", train=True, download=True, transform=transform |
| 92 | + ) |
| 93 | + num_samples = len(train_data) |
| 94 | + indices = np.random.permutation(num_samples) |
| 95 | + split = int(num_samples * 0.5) |
| 96 | + |
| 97 | + search_train_loader = DataLoader( |
| 98 | + train_data, |
| 99 | + batch_size=batch_size, |
| 100 | + num_workers=10, |
| 101 | + sampler=SubsetRandomSampler(indices[:split]), |
| 102 | + ) |
| 103 | + |
| 104 | + search_valid_loader = DataLoader( |
| 105 | + train_data, |
| 106 | + batch_size=batch_size, |
| 107 | + num_workers=10, |
| 108 | + sampler=SequentialSampler(indices[split:]), |
| 109 | + ) |
| 110 | + |
| 111 | + return search_train_loader, search_valid_loader |
| 112 | + |
| 113 | + |
| 114 | +def train_model( |
| 115 | + architecture, |
| 116 | + train_loader, |
| 117 | + valid_loader, |
| 118 | + max_epochs=600, |
| 119 | + learning_rate=0.025, |
| 120 | + fast_dev_run=False |
| 121 | +): |
| 122 | + with model_context(architecture): |
| 123 | + if DATASET == 'CIFAR10': |
| 124 | + model = DartsSpace(width=16, num_cells=10, dataset='cifar') |
| 125 | + elif DATASET == 'CIFAR100': |
| 126 | + model = DartsSpace(width=16, num_cells=10, dataset='cifar100') |
| 127 | + |
| 128 | + device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
| 129 | + #if torch.cuda.device_count() > 1: |
| 130 | + # model = torch.nn.DataParallel(model) |
| 131 | + model.to(device) |
| 132 | + |
| 133 | + evaluator = Lightning( |
| 134 | + DartsClassificationModule( |
| 135 | + learning_rate=learning_rate, |
| 136 | + weight_decay=3e-4, |
| 137 | + auxiliary_loss_weight=0.4, |
| 138 | + max_epochs=max_epochs |
| 139 | + ), |
| 140 | + trainer=Trainer( |
| 141 | + gradient_clip_val=5.0, |
| 142 | + max_epochs=max_epochs, |
| 143 | + fast_dev_run=fast_dev_run, |
| 144 | + devices=[0] |
| 145 | + ), |
| 146 | + train_dataloaders=train_loader#, |
| 147 | + #val_dataloaders=valid_loader |
| 148 | + ) |
| 149 | + |
| 150 | + evaluator.fit(model) |
| 151 | + return model |
| 152 | + |
| 153 | + |
| 154 | +def evaluate_and_save_results( |
| 155 | + model, |
| 156 | + architecture, |
| 157 | + model_id, # Новый обязательный параметр для идентификации модели |
| 158 | + valid_loader, |
| 159 | + folder_name="results_seq_0" |
| 160 | +): |
| 161 | + """ |
| 162 | + Оценивает модель на валидационном наборе данных и сохраняет результаты в JSON. |
| 163 | + Аргументы: |
| 164 | + model: Обученная модель |
| 165 | + architecture: Архитектура модели |
| 166 | + valid_loader (DataLoader): DataLoader для валидационных данных |
| 167 | + model_id: Уникальный идентификатор модели |
| 168 | + folder_name (str): Папка для сохранения результатов |
| 169 | + """ |
| 170 | + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 171 | + os.makedirs(folder_name, exist_ok=True) |
| 172 | + |
| 173 | + # Перенос модели на устройство и режим оценки |
| 174 | + model.to(device) |
| 175 | + model.eval() |
| 176 | + |
| 177 | + valid_correct = 0 |
| 178 | + valid_total = 0 |
| 179 | + valid_preds = [] |
| 180 | + |
| 181 | + with torch.no_grad(): |
| 182 | + for images, labels in valid_loader: |
| 183 | + # print(labels) |
| 184 | + images, labels = images.to(device), labels.to(device) |
| 185 | + outputs = model(images) |
| 186 | + outputs = torch.softmax(outputs, dim=1) |
| 187 | + valid_preds.extend(outputs.cpu().tolist()) |
| 188 | + _, predicted = torch.max(outputs, 1) |
| 189 | + valid_correct += (predicted == labels).sum().item() |
| 190 | + valid_total += labels.size(0) |
| 191 | + |
| 192 | + valid_accuracy = valid_correct / valid_total |
| 193 | + |
| 194 | + # Формирование результата |
| 195 | + result = { |
| 196 | + "architecture": architecture, |
| 197 | + "valid_predictions": valid_preds, |
| 198 | + "valid_accuracy": valid_accuracy, |
| 199 | + } |
| 200 | + |
| 201 | + # Генерация имени файла с использованием model_id |
| 202 | + file_name = f"model_{model_id:04d}_results.json" |
| 203 | + file_path = os.path.join(folder_name, file_name) |
| 204 | + |
| 205 | + # Сохранение результатов |
| 206 | + with open(file_path, "w") as f: |
| 207 | + json.dump(result, f, indent=4) |
| 208 | + |
| 209 | + print(f"Results for model_{model_id} saved to {file_path}") |
| 210 | + |
| 211 | + |
| 212 | +if __name__ == "__main__": |
| 213 | + arch_dicts = generate_arch_dicts(NUM_MODLES) |
| 214 | + arch_dicts = [tmp_arch["architecture"] for tmp_arch in arch_dicts] |
| 215 | + search_train_loader, search_valid_loader = get_data_loaders( |
| 216 | + batch_size=BATCH_SIZE |
| 217 | + ) # Получаем загрузчики CIFAR10 |
| 218 | + |
| 219 | + for idx, architecture in enumerate(tqdm(arch_dicts)): |
| 220 | + model = train_model( # Обучаем модель |
| 221 | + architecture, |
| 222 | + search_train_loader, |
| 223 | + search_valid_loader, |
| 224 | + max_epochs=MAX_EPOCHS, |
| 225 | + learning_rate=LEARNING_RATE, |
| 226 | + fast_dev_run=False |
| 227 | + ) |
| 228 | + clear_output(wait=True) |
| 229 | + |
| 230 | + evaluate_and_save_results( |
| 231 | + model, architecture, idx, valid_loader=search_valid_loader, folder_name="results_cifar100" |
| 232 | + ) # Оцениваем и сохраняем архитектуры, предсказания на тестовом наборе CIFAR10 и accuracy |
0 commit comments