Skip to content

Commit b17b877

Browse files
committed
Merge branch 'master' of github.com:intsystems/predicator-function-for-neural-networks
2 parents 439e7f6 + 9261ea2 commit b17b877

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

53 files changed

+58757
-57035
lines changed

.gitignore

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -30,6 +30,12 @@ wheels/
3030
*.egg
3131
MANIFEST
3232
*.bin
33+
data/
34+
*.json
35+
*.csv
36+
code/dataset/
37+
code/results/
38+
3339

3440
# PyInstaller
3541
# Usually these files are written by a python script from a template

README.rst

Lines changed: 11 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -15,16 +15,23 @@
1515

1616
.. class:: center
1717

18-
:Название исследуемой задачи: Использование придакторной функции для построения ансамбля нейросетей
18+
:Название исследуемой задачи: Использование предикаторной функции для построения ансамбля нейросетей
1919
:Тип научной работы: M1P
2020
:Автор: Уденеев Александр Владимирович
2121
:Научный руководитель: Бахтеев Олег
2222
:Научный консультант(при наличии): Бабкин Петр
2323

24-
Abstract
24+
**Abstract**
2525
========
26-
27-
Purus sit amet luctus venenatis lectus magna fringilla. Condimentum id venenatis a condimentum vitae sapien. Auctor neque vitae tempus quam pellentesque nec nam aliquam. Eget egestas purus viverra accumsan in. Nam aliquam sem et tortor. Donec et odio pellentesque diam volutpat commodo. Odio pellentesque diam volutpat commodo sed egestas. Sit amet dictum sit amet justo. Pellentesque sit amet porttitor eget. Imperdiet sed euismod nisi porta lorem mollis aliquam ut. Quis varius quam quisque id diam vel quam elementum. Ornare lectus sit amet est placerat in. Vulputate dignissim suspendisse in est ante. Elit sed vulputate mi sit amet mauris. Egestas sed tempus urna et pharetra pharetra. Viverra tellus in hac habitasse platea dictumst vestibulum rhoncus.
26+
The automated search for optimal neural network architectures (NAS) is a challenging compu-
27+
tational problem, and Neural Ensemble Search (NES) is even more complex. In this work, we propose a
28+
surrogate-based approach for ensebmle creation. Neural architectures are represented as graphs, and their
29+
predictions on a dataset serve as training data for the surrogate function. Using this function, we develop
30+
an efficient NES framework that enables the selection of diverse and high-performing architectures. The
31+
resulting ensemble achieves superior predictive accuracy on CIFAR-10 compared to other one-shot NES
32+
methods, demonstrating the effectiveness of our approach.
33+
34+
**Keywords**: NES, GCN, triplet loss, surrogate function
2835

2936
Research publications
3037
===============================

Udeneev2025Surrogate.pdf

1.76 MB
Binary file not shown.

0 commit comments

Comments
 (0)